Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heidelberg University Hospital starts up one-of-a-kind gantry at Heidelberg Ion Beam Therapy Center

On October 29, 2012, German Minister of Education and Research Annette Schavan and Baden-Württemberg’s Minister of Science, Research, and the Arts Theresia Bauer dedicated the innovative large medical device for tumor irradiation and cancer research.

Heidelberg University Hospital’s Heidelberg Ion Beam Therapy Center (HIT) started up its unique beam guide system (gantry), the only one of its kind in the world, at a festive ceremony on October 29, 2012. The 25-meter-long 360° rotating beam guide system can deliver heavy ions or protons to irradiate tumors very precisely and effectively from any angle, even if the tumors are located deep inside the body or at places surrounded by tissue that is highly sensitive to radiation. The first three patients, all of whom have brain tumors, underwent radiation therapy with the gantry on October 19, 2012.

The gantry at the Heidelberg Ion Beam Therapy Center (HIT) is a 360° rotating beam delivery system for heavy ions. The world’s only such facility, the gantry is a gigantic steel construction weighing 670 tons. It is 25 meters long, 13 meters in diameter and spans three stories. Photo: Heidelberg University Hospital

“The Heidelberg Ion Beam Therapy Center (HIT) is one of the world’s most innovative research and treatment facilities for cancer,” said Prof. Annette Schavan, German Minister of Education and Research, at the dedication ceremony for the start-up of the gantry. “Clinical studies and basic research will deliver important findings about the efficacy of heavy ion and proton irradiation in different tumors in the coming years.” The gantry will enhance Germany’s leading role here in Heidelberg in providing radiotherapy for cancer patients, Schavan added.

Treatment at HIT is part of the therapy concept of the National Center for Tumor Diseases (NCT), which is jointly operated by Heidelberg University Hospital and the German Cancer Research Center (DKFZ). The concept aims to provide interdisciplinary, individually tailored cancer treatment for every cancer patient. “Our collaboration enables us to translate the results of basic research into new treatment concepts. This also applies to the ongoing advances in radiotherapy at HIT,” said Prof. Guido Adler, Chief Medical Director of Heidelberg University Hospital.

Around 1,200 patients treated at HIT to date

HIT was opened in November 2009. Since then, the three radiotherapy rooms and a research irradiation site have gradually been started up. Around 1,200 patients have been treated to date. The facility is the size of half a soccer field and cost around EUR 119 million, with funding provided in equal amounts by Heidelberg University Hospital and the German government.

HIT’s pivoting beam guide system was developed by a team from GSI Helmholtz Center for Heavy Ion Research and built by MT Aerospace. “With GSI’s support, Heidelberg University Hospital has charted new territory in terms of both technology and science,” explained Theresia Bauer, Baden-Württemberg’s Minister of Science, Research, and the Arts. Bauer also praised the hospital’s entrepreneurial courage and excellent planning, which is based on covering the costs of HIT’s clinical operations. “HIT’s clinical operations run six days a week. Since an individual patient is irradiated around 20 times on average, we can treat some 750 patients per year in the three treatment rooms,” said Irmtraut Gürkan, Administrative Director of Heidelberg University Hospital. “The calculations for the reimbursement agreements have now been adjusted to reflect this capacity.”

Clinical studies compare the efficacy of the different ion beams

HIT is Europe’s first combined treatment facility where patients can undergo radiation therapy with both protons and with various heavy ions (carbon, helium and oxygen ions). This allows comparative clinical studies to be performed. “For certain tumor diseases in which conventional therapy is not successful, clinical studies will be conducted over the next few years to investigate which type of radiation therapy yields better cure rates, therapy with protons or with heavy ions,” explained Prof. Jürgen Debus, Medical Director of the Department of Radiation Oncology and Radiotherapy at Heidelberg University Hospital and of HIT. The aim is to determine which heavy ions have the best therapeutic effect for the individual tumor diseases.

For some rare tumor diseases that are difficult to treat, carbon ion radiation is already the therapy of choice. These patients come to HIT for treatment from all over Germany and from abroad. “ Ion therapy at HIT is likely to benefit around 15% of the cancer patients whose tumor growth cannot be stopped with conventional therapy,” Debus said.

The gantry: Gigantic high-precision steel construction
The gantry at HIT is a gigantic steel construction 25 meters long, 13 meters in diameter and weighing 670 tons. Yet it is capable of astounding precision. The beam reaches the patients at up to 75% of the speed of light, can penetrate up to 30 centimeters into the tissue and still deviates from the target by no more than one millimeter. “In conventional radiation therapy with photons, mobile radiation sources have already been used very successfully in clinical applications for decades,” stated Prof. Thomas Haberer, Scientific and Technical Director at HIT. While proton gantries are used at other international treatment facilities, especially in the United States, the Heidelberg gantry is now the world’s first facility to begin gathering experience with heavy ions.


Scientific and Medical Director:
Prof. Jürgen Debus
phone: +49 6221 / 56 8203

Scientific and Technical Director:
Prof. Thomas Haberer
phone: +49 6221 / 56 6375

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)

Dr. Annette Tuffs | idw
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>