Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Create “Squeezed” Quantum Vacuum Filled with Atoms

02.12.2011
Based on a new detection method to access previously unobtainable measurements in atomic gases

Quantum theory is known for its peculiar concepts that appear to contradict the fundamental principles of traditional physics. Researchers from Heidelberg University have now succeeded in creating a special quantum state between two mesoscopic gases with approximately 500 atoms.


Typically noise is unwanted in experiments, and the challenge is minimising it. In the experiment of generating and detecting a „squeezed“ vacuum, the noise is the signal that reveals the existence of quantum entanglement. Even though the number of atoms in both gases (marked in red and blue) fluctuates extremely, their difference (marked in black) is very small. In order to obtain a correct analysis, a few experiments (on the left) are not sufficient. The noise has to be analysed in long series of measurements (on the right). Figure: Kirchhoff Institute for Physics

The state is known as a “squeezed“ vacuum, in which measuring one gas affects the results of the measurement on the other. To produce these results the team, headed by Prof. Dr. Markus Oberthaler at the Kirchhoff Institute for Physics, had to develop a novel detection technique to measure values in atomic gases that were previously unobtainable. The results of their research have been published in the journal “Nature”.

The quantum state observed by the Heidelberg researchers has been of fundamental interest since it was first put forward in 1935 by Einstein, Podolsky and Rosen (EPR) in a thought experiment. The three researchers wanted to use it to demonstrate that quantum mechanics is not consistent with a local reality of physical systems that is experimentally observable. The EPR situation refers to two systems in a state of quantum entanglement, where measuring one system instantaneously effects the results of the measurement on the other – an incomprehensible fact to our traditional way of thinking, where physical laws exist regardless of whether systems are observed or not.

The breakthrough in the quantum state discovered and created by Prof. Oberthaler and his team lies in the quantum entanglement of continuous variables. This means that in principle, individual measurements of the two gases randomly produce many different values. After measuring one gas, however, all the other measurements on the second – entangled – gas can be precisely predicted. To create and detect a “squeezed” quantum vacuum with its unique characteristics in the laboratory, the researchers worked with a Bose Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state. The condensate used was comprised of Rubidium atoms cooled to an ultracold temperature of 0.000 000 1 Kelvin above absolute zero.

“The setup of the experiment had to be extraordinarily stable since we took measurements continuously for many days in a row to gather enough data to verify the generation of a quantum entanglement”, explains Prof. Oberthaler. For this purpose, the researchers had to guarantee the stability of magnetic fields that is 10,000 times smaller than of the magnetic field of the earth. They also needed to detect a gas consisting of 500 atoms with an error tolerance of less than eight atoms since the particle number fluctuations served as the signal for a successful generation of an entanglement. Prof. Oberthaler: “Normally you don’t want noise in experiments, but in our investigations careful examination of the noise actually proved the presence of the quantum entanglement.” The challenge for the Heidelberg team was suppressing the technical noise enough to allow the quantum noise to dominate.

Prof. Oberthaler and his colleagues hope not only that their research results lead to an application for precise atomic interferometry, but also see their findings as an important step in the investigation of fundamental questions of quantum mechanical entanglement of massive particles.

For information online, see http://www.kip.uni-heidelberg.de/matterwaveoptics.

Original publication:
C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki and M.K. Oberthaler: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature online, 30 November 2011, doi: 10.1038/nature10654
Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>