Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Create “Squeezed” Quantum Vacuum Filled with Atoms

02.12.2011
Based on a new detection method to access previously unobtainable measurements in atomic gases

Quantum theory is known for its peculiar concepts that appear to contradict the fundamental principles of traditional physics. Researchers from Heidelberg University have now succeeded in creating a special quantum state between two mesoscopic gases with approximately 500 atoms.


Typically noise is unwanted in experiments, and the challenge is minimising it. In the experiment of generating and detecting a „squeezed“ vacuum, the noise is the signal that reveals the existence of quantum entanglement. Even though the number of atoms in both gases (marked in red and blue) fluctuates extremely, their difference (marked in black) is very small. In order to obtain a correct analysis, a few experiments (on the left) are not sufficient. The noise has to be analysed in long series of measurements (on the right). Figure: Kirchhoff Institute for Physics

The state is known as a “squeezed“ vacuum, in which measuring one gas affects the results of the measurement on the other. To produce these results the team, headed by Prof. Dr. Markus Oberthaler at the Kirchhoff Institute for Physics, had to develop a novel detection technique to measure values in atomic gases that were previously unobtainable. The results of their research have been published in the journal “Nature”.

The quantum state observed by the Heidelberg researchers has been of fundamental interest since it was first put forward in 1935 by Einstein, Podolsky and Rosen (EPR) in a thought experiment. The three researchers wanted to use it to demonstrate that quantum mechanics is not consistent with a local reality of physical systems that is experimentally observable. The EPR situation refers to two systems in a state of quantum entanglement, where measuring one system instantaneously effects the results of the measurement on the other – an incomprehensible fact to our traditional way of thinking, where physical laws exist regardless of whether systems are observed or not.

The breakthrough in the quantum state discovered and created by Prof. Oberthaler and his team lies in the quantum entanglement of continuous variables. This means that in principle, individual measurements of the two gases randomly produce many different values. After measuring one gas, however, all the other measurements on the second – entangled – gas can be precisely predicted. To create and detect a “squeezed” quantum vacuum with its unique characteristics in the laboratory, the researchers worked with a Bose Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state. The condensate used was comprised of Rubidium atoms cooled to an ultracold temperature of 0.000 000 1 Kelvin above absolute zero.

“The setup of the experiment had to be extraordinarily stable since we took measurements continuously for many days in a row to gather enough data to verify the generation of a quantum entanglement”, explains Prof. Oberthaler. For this purpose, the researchers had to guarantee the stability of magnetic fields that is 10,000 times smaller than of the magnetic field of the earth. They also needed to detect a gas consisting of 500 atoms with an error tolerance of less than eight atoms since the particle number fluctuations served as the signal for a successful generation of an entanglement. Prof. Oberthaler: “Normally you don’t want noise in experiments, but in our investigations careful examination of the noise actually proved the presence of the quantum entanglement.” The challenge for the Heidelberg team was suppressing the technical noise enough to allow the quantum noise to dominate.

Prof. Oberthaler and his colleagues hope not only that their research results lead to an application for precise atomic interferometry, but also see their findings as an important step in the investigation of fundamental questions of quantum mechanical entanglement of massive particles.

For information online, see http://www.kip.uni-heidelberg.de/matterwaveoptics.

Original publication:
C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki and M.K. Oberthaler: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature online, 30 November 2011, doi: 10.1038/nature10654
Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>