Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Create “Squeezed” Quantum Vacuum Filled with Atoms

02.12.2011
Based on a new detection method to access previously unobtainable measurements in atomic gases

Quantum theory is known for its peculiar concepts that appear to contradict the fundamental principles of traditional physics. Researchers from Heidelberg University have now succeeded in creating a special quantum state between two mesoscopic gases with approximately 500 atoms.


Typically noise is unwanted in experiments, and the challenge is minimising it. In the experiment of generating and detecting a „squeezed“ vacuum, the noise is the signal that reveals the existence of quantum entanglement. Even though the number of atoms in both gases (marked in red and blue) fluctuates extremely, their difference (marked in black) is very small. In order to obtain a correct analysis, a few experiments (on the left) are not sufficient. The noise has to be analysed in long series of measurements (on the right). Figure: Kirchhoff Institute for Physics

The state is known as a “squeezed“ vacuum, in which measuring one gas affects the results of the measurement on the other. To produce these results the team, headed by Prof. Dr. Markus Oberthaler at the Kirchhoff Institute for Physics, had to develop a novel detection technique to measure values in atomic gases that were previously unobtainable. The results of their research have been published in the journal “Nature”.

The quantum state observed by the Heidelberg researchers has been of fundamental interest since it was first put forward in 1935 by Einstein, Podolsky and Rosen (EPR) in a thought experiment. The three researchers wanted to use it to demonstrate that quantum mechanics is not consistent with a local reality of physical systems that is experimentally observable. The EPR situation refers to two systems in a state of quantum entanglement, where measuring one system instantaneously effects the results of the measurement on the other – an incomprehensible fact to our traditional way of thinking, where physical laws exist regardless of whether systems are observed or not.

The breakthrough in the quantum state discovered and created by Prof. Oberthaler and his team lies in the quantum entanglement of continuous variables. This means that in principle, individual measurements of the two gases randomly produce many different values. After measuring one gas, however, all the other measurements on the second – entangled – gas can be precisely predicted. To create and detect a “squeezed” quantum vacuum with its unique characteristics in the laboratory, the researchers worked with a Bose Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state. The condensate used was comprised of Rubidium atoms cooled to an ultracold temperature of 0.000 000 1 Kelvin above absolute zero.

“The setup of the experiment had to be extraordinarily stable since we took measurements continuously for many days in a row to gather enough data to verify the generation of a quantum entanglement”, explains Prof. Oberthaler. For this purpose, the researchers had to guarantee the stability of magnetic fields that is 10,000 times smaller than of the magnetic field of the earth. They also needed to detect a gas consisting of 500 atoms with an error tolerance of less than eight atoms since the particle number fluctuations served as the signal for a successful generation of an entanglement. Prof. Oberthaler: “Normally you don’t want noise in experiments, but in our investigations careful examination of the noise actually proved the presence of the quantum entanglement.” The challenge for the Heidelberg team was suppressing the technical noise enough to allow the quantum noise to dominate.

Prof. Oberthaler and his colleagues hope not only that their research results lead to an application for precise atomic interferometry, but also see their findings as an important step in the investigation of fundamental questions of quantum mechanical entanglement of massive particles.

For information online, see http://www.kip.uni-heidelberg.de/matterwaveoptics.

Original publication:
C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki and M.K. Oberthaler: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature online, 30 November 2011, doi: 10.1038/nature10654
Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>