Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heidelberg Researchers Create “Squeezed” Quantum Vacuum Filled with Atoms

Based on a new detection method to access previously unobtainable measurements in atomic gases

Quantum theory is known for its peculiar concepts that appear to contradict the fundamental principles of traditional physics. Researchers from Heidelberg University have now succeeded in creating a special quantum state between two mesoscopic gases with approximately 500 atoms.

Typically noise is unwanted in experiments, and the challenge is minimising it. In the experiment of generating and detecting a „squeezed“ vacuum, the noise is the signal that reveals the existence of quantum entanglement. Even though the number of atoms in both gases (marked in red and blue) fluctuates extremely, their difference (marked in black) is very small. In order to obtain a correct analysis, a few experiments (on the left) are not sufficient. The noise has to be analysed in long series of measurements (on the right). Figure: Kirchhoff Institute for Physics

The state is known as a “squeezed“ vacuum, in which measuring one gas affects the results of the measurement on the other. To produce these results the team, headed by Prof. Dr. Markus Oberthaler at the Kirchhoff Institute for Physics, had to develop a novel detection technique to measure values in atomic gases that were previously unobtainable. The results of their research have been published in the journal “Nature”.

The quantum state observed by the Heidelberg researchers has been of fundamental interest since it was first put forward in 1935 by Einstein, Podolsky and Rosen (EPR) in a thought experiment. The three researchers wanted to use it to demonstrate that quantum mechanics is not consistent with a local reality of physical systems that is experimentally observable. The EPR situation refers to two systems in a state of quantum entanglement, where measuring one system instantaneously effects the results of the measurement on the other – an incomprehensible fact to our traditional way of thinking, where physical laws exist regardless of whether systems are observed or not.

The breakthrough in the quantum state discovered and created by Prof. Oberthaler and his team lies in the quantum entanglement of continuous variables. This means that in principle, individual measurements of the two gases randomly produce many different values. After measuring one gas, however, all the other measurements on the second – entangled – gas can be precisely predicted. To create and detect a “squeezed” quantum vacuum with its unique characteristics in the laboratory, the researchers worked with a Bose Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state. The condensate used was comprised of Rubidium atoms cooled to an ultracold temperature of 0.000 000 1 Kelvin above absolute zero.

“The setup of the experiment had to be extraordinarily stable since we took measurements continuously for many days in a row to gather enough data to verify the generation of a quantum entanglement”, explains Prof. Oberthaler. For this purpose, the researchers had to guarantee the stability of magnetic fields that is 10,000 times smaller than of the magnetic field of the earth. They also needed to detect a gas consisting of 500 atoms with an error tolerance of less than eight atoms since the particle number fluctuations served as the signal for a successful generation of an entanglement. Prof. Oberthaler: “Normally you don’t want noise in experiments, but in our investigations careful examination of the noise actually proved the presence of the quantum entanglement.” The challenge for the Heidelberg team was suppressing the technical noise enough to allow the quantum noise to dominate.

Prof. Oberthaler and his colleagues hope not only that their research results lead to an application for precise atomic interferometry, but also see their findings as an important step in the investigation of fundamental questions of quantum mechanical entanglement of massive particles.

For information online, see

Original publication:
C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki and M.K. Oberthaler: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature online, 30 November 2011, doi: 10.1038/nature10654
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>