Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard physicists demonstrate a new cooling technique for quantum gases

23.12.2011
Physicists at Harvard University have realized a new way to cool synthetic materials by employing a quantum algorithm to remove excess energy.

The research, published this week in the journal Nature, is the first application of such an "algorithmic cooling" technique to ultra-cold atomic gases, opening new possibilities from materials science to quantum computation.

"Ultracold atoms are the coldest objects in the known universe," explains senior author Markus Greiner, associate professor of Physics at Harvard. "Their temperature is only a billionth of a degree above absolute zero temperature, but we will need to make them even colder if we are to harness their unique properties to learn about quantum mechanics."

Greiner and his colleagues study quantum many-body physics, the exotic and complex behaviors that result when simple quantum particles interact. It is these behaviors which give rise to high-temperature superconductivity and quantum magnetism, and that many physicists hope to employ in quantum computers.

"We simulate real-world materials by building synthetic counterparts composed of ultra-cold atoms trapped in laser lattices," says co-author Waseem Bakr, a graduate student in physics at Harvard. "This approach enables us to image and manipulate the individual particles in a way that has not been possible in real materials."

The catch is that observing the quantum mechanical effects that Greiner, Bakr and colleagues seek requires extreme temperatures.

"One typically thinks of the quantum world as being small," says Bakr, " but the truth is that many bizarre features of quantum mechanics, like entanglement, are equally dependent upon extreme cold."

The hotter an object is, the more its constituent particles move around, obscuring the quantum world much as a shaken camera blurs a photograph.

The push to ever-lower temperatures is driven by techniques like "laser cooling" and "evaporative cooling," which are approaching their limits at nanoKelvin temperatures. In a proof-of-principle experiment, the Harvard team has demonstrated that they can actively remove the fluctuations which constitute temperature, rather than merely waiting for hot particles to leave as in evaporative cooling.

Akin to preparing precisely one egg per dimple in a carton, this "orbital excitation blockade" process removes excess atoms from a crystal until there is precisely one atom per site.

"The collective behaviors of atoms at these temperatures remain an important open question, and the breathtaking control we now exert over individual atoms will be a powerful tool for answering it," said Greiner. "We are glimpsing a mysterious and wonderful world that has never been seen in this way before."

Greiner and Bakr's co-authors in Harvard's Department of Physics are Philipp Preiss, Eric Tai, Ruichao Ma and Jonathan Simon.

Their work was supported by the Army Research Office through the DARPA OLE program, the AFOSR MURI program, and by grants from the NSF.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>