Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard physicists demonstrate a new cooling technique for quantum gases

23.12.2011
Physicists at Harvard University have realized a new way to cool synthetic materials by employing a quantum algorithm to remove excess energy.

The research, published this week in the journal Nature, is the first application of such an "algorithmic cooling" technique to ultra-cold atomic gases, opening new possibilities from materials science to quantum computation.

"Ultracold atoms are the coldest objects in the known universe," explains senior author Markus Greiner, associate professor of Physics at Harvard. "Their temperature is only a billionth of a degree above absolute zero temperature, but we will need to make them even colder if we are to harness their unique properties to learn about quantum mechanics."

Greiner and his colleagues study quantum many-body physics, the exotic and complex behaviors that result when simple quantum particles interact. It is these behaviors which give rise to high-temperature superconductivity and quantum magnetism, and that many physicists hope to employ in quantum computers.

"We simulate real-world materials by building synthetic counterparts composed of ultra-cold atoms trapped in laser lattices," says co-author Waseem Bakr, a graduate student in physics at Harvard. "This approach enables us to image and manipulate the individual particles in a way that has not been possible in real materials."

The catch is that observing the quantum mechanical effects that Greiner, Bakr and colleagues seek requires extreme temperatures.

"One typically thinks of the quantum world as being small," says Bakr, " but the truth is that many bizarre features of quantum mechanics, like entanglement, are equally dependent upon extreme cold."

The hotter an object is, the more its constituent particles move around, obscuring the quantum world much as a shaken camera blurs a photograph.

The push to ever-lower temperatures is driven by techniques like "laser cooling" and "evaporative cooling," which are approaching their limits at nanoKelvin temperatures. In a proof-of-principle experiment, the Harvard team has demonstrated that they can actively remove the fluctuations which constitute temperature, rather than merely waiting for hot particles to leave as in evaporative cooling.

Akin to preparing precisely one egg per dimple in a carton, this "orbital excitation blockade" process removes excess atoms from a crystal until there is precisely one atom per site.

"The collective behaviors of atoms at these temperatures remain an important open question, and the breathtaking control we now exert over individual atoms will be a powerful tool for answering it," said Greiner. "We are glimpsing a mysterious and wonderful world that has never been seen in this way before."

Greiner and Bakr's co-authors in Harvard's Department of Physics are Philipp Preiss, Eric Tai, Ruichao Ma and Jonathan Simon.

Their work was supported by the Army Research Office through the DARPA OLE program, the AFOSR MURI program, and by grants from the NSF.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>