Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hanging by a thread: Why bent fibers hold more water

03.04.2018

On your next stroll through the woods, take a look at the dew droplets hanging from the leaves. If you see moisture on a cypress or juniper tree with their distinct bifurcated leaves, you'll likely see those water droplets defying the rules of physics.

Inspired by the large droplets that form on a leaf tip or other thin filament, a team of researchers from Utah State University, University of Liège, Belgium, and Brigham Young University have found the exact angle at which a bent fiber holds the most fluid. Their findings were published March 15 in the Royal Society of Chemistry's Soft Matter, a top journal covering physics, chemistry and biology.


Researchers found the exact angle at which a bent fiber holds the most fluid. The research has many applications including drug manufacturing or developing technologies that use microfluidics.

Credit: USU/Zhao Pan

Lead researcher Dr. Tadd Truscott, creator of the world-renowned Splash Lab at USU, says the study offers important insight into the field of fluid dynamics.

"For the first time, we can identify the exact angle of a bent fiber that will hold the most fluid," he said. "This research has many industrial applications including drug manufacturing or in developing technologies that use microfluidics. This could also be useful in developing more efficient fog-collection nets which are becoming more popular in arid regions. Or on the other hand, this research could inspire a more efficient dehumidifier design."

Truscott uses the analogy of a spider web to illustrate the bent fiber concept. Water droplets attach to the web fibers at various locations, but the largest drops accumulate at the intersections of fibers that form acute angles. The best angle for a large droplet: 36 degrees.

"After experimental testing, we determined that a bent fiber forming a 36-degree angle traps the most water," Truscott added. "That amount is three times more than can be suspended on a horizontal fiber."

The researchers, including USU's Dr. Zhao Pan, Dr. Floriane Weyer and Dr. Nicolas Vandewalle of the University of Liège and Dr. William Pitt of BYU, tested their bent-fiber theory using a specially-constructed apparatus. Drs. Weyer and Pan built a rigid circular frame and strung nylon fibers from one side of the frame to the other. Next they attached a narrower fiber at the center and pulled the original horizontal fiber upward, forming an upside-down v. By varying the fiber attachment locations, they could change the angle formed between the two halves of the bent fiber.

Liquids were applied to the fiber corner using a micro-pipette. The volume of the droplet increased incrementally until the droplet detached from the fiber.

Truscott and his colleagues at the Splash Lab used high-speed photography to capture the entire process. The footage and other details were then analyzed and mathematically modeled by USU's Zhao Pan with the help of William Pitt at BYU.

The researchers, of course, are not the first to be inspired by droplets in nature. The ancient poet Tu Fu (AD 712 - 770) recorded his observation of "heavy dew beads and trickles." Jules Renard penned a similar observation about 125 years ago: "A few dew drops on a spider web and here is a diamond river." Truscott says the droplet study offers a connection between science and art.

"That's the best part of our lab," he said. "We are science nerds from different cultures, but we are all passionate about literature and art."

###

Researcher Contact: Dr. Tadd Truscott - Dept. of Mechanical and Aerospace Engineering, Utah State University | taddtruscott@gmail.com | office: +1-435-797-8246 | @TheSplashLab | splashlab.org

For additional media assistance, contact: Matt Jensen - USU College of Engineering | matthew.jensen@usu.edu | office: +1-435-797-8170 | cell: +1-801-362-0830 | @EngineeringUSU | engineering.usu.edu

http://www.usu.edu 

Dr. Tadd Truscott | EurekAlert!

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>