Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ‘Hall’ mark of a quantum magnet

17.05.2010
The presence of exotic particles, called spinons, might now be detectable in a magnetic field, providing insight into quantum magnet properties

An important model to explain high-temperature superconductivity is the so-called ‘quantum spin liquid’. Scientists are therefore interested in understanding the low-energy excitations of this magnetic state.

Now, a theoretical study by a research team from RIKEN and the Massachusetts Institute of Technology, USA, has explained how the properties of spin liquids could be revealed by a simple heat-transfer experiment.

In an insulating magnetic crystal, the electronic spins are localized to the atoms that form the crystal lattice. For most such magnets, or antiferromagnets, the chemical bonds favor an arrangement where, at low temperatures, each spin points in a direction opposite to that of its neighbor. However, on a triangular lattice, such as the ‘Kagome lattice’, a spin cannot simultaneously be opposite to all of its neighbors. The spins in these magnets never order, even at very low temperatures—giving rise to the name quantum spin liquid.

“Spin liquids have an exotic electronic state because [their] electrons can effectively dissociate into distinguishable spin- and charge-carrying particles,” explains team-member Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako. “The spin-carrying particle is called a spinon and determines the low-energy properties of the magnet.”

To date, however, few experiments have found spinons. Nagaosa and his collaborators explain how a method similar to the so-called ‘Hall measurement’—an indispensible technique for studying the properties of semiconductors—could be used to detect spinons.

In the classic version of the Hall measurement, a magnetic field is applied perpendicular to a charge-carrying current, causing positive charges to curve one way and negative charges the other. The deflection of the charges provides information about their properties, including their sign.

In the ‘thermal Hall effect’ considered by Nagaosa and his colleagues, temperature serves as the driving force to create a current—not of charges, but of magnetic excitations—that flow in a magnetic field. For a spin liquid, these excitations are the spinons. As in the classic Hall effect, a magnetic field will deflect these excitations, which will change the direction of the heat flow—an effect that experimentalists should be able to measure.

Nagaosa and his colleagues showed that while there is no thermal Hall effect in most conventional antiferromagnets, the presence of spinons in a spin liquid would result in a clear effect. This experimental probe could therefore become an important way to identify and study excitations of quantum magnets.

The corresponding author for this highlight is based at the Cross-Correlated Materials Research Group, RIKEN Advanced Science Institute

Journal information

1. Katsura, H., Nagaosa, N. & Lee, P.A. Theory of the thermal Hall effect in quantum magnets. Physical Review Letters 104, 066403 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6264
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>