Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ‘Hall’ mark of a quantum magnet

17.05.2010
The presence of exotic particles, called spinons, might now be detectable in a magnetic field, providing insight into quantum magnet properties

An important model to explain high-temperature superconductivity is the so-called ‘quantum spin liquid’. Scientists are therefore interested in understanding the low-energy excitations of this magnetic state.

Now, a theoretical study by a research team from RIKEN and the Massachusetts Institute of Technology, USA, has explained how the properties of spin liquids could be revealed by a simple heat-transfer experiment.

In an insulating magnetic crystal, the electronic spins are localized to the atoms that form the crystal lattice. For most such magnets, or antiferromagnets, the chemical bonds favor an arrangement where, at low temperatures, each spin points in a direction opposite to that of its neighbor. However, on a triangular lattice, such as the ‘Kagome lattice’, a spin cannot simultaneously be opposite to all of its neighbors. The spins in these magnets never order, even at very low temperatures—giving rise to the name quantum spin liquid.

“Spin liquids have an exotic electronic state because [their] electrons can effectively dissociate into distinguishable spin- and charge-carrying particles,” explains team-member Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako. “The spin-carrying particle is called a spinon and determines the low-energy properties of the magnet.”

To date, however, few experiments have found spinons. Nagaosa and his collaborators explain how a method similar to the so-called ‘Hall measurement’—an indispensible technique for studying the properties of semiconductors—could be used to detect spinons.

In the classic version of the Hall measurement, a magnetic field is applied perpendicular to a charge-carrying current, causing positive charges to curve one way and negative charges the other. The deflection of the charges provides information about their properties, including their sign.

In the ‘thermal Hall effect’ considered by Nagaosa and his colleagues, temperature serves as the driving force to create a current—not of charges, but of magnetic excitations—that flow in a magnetic field. For a spin liquid, these excitations are the spinons. As in the classic Hall effect, a magnetic field will deflect these excitations, which will change the direction of the heat flow—an effect that experimentalists should be able to measure.

Nagaosa and his colleagues showed that while there is no thermal Hall effect in most conventional antiferromagnets, the presence of spinons in a spin liquid would result in a clear effect. This experimental probe could therefore become an important way to identify and study excitations of quantum magnets.

The corresponding author for this highlight is based at the Cross-Correlated Materials Research Group, RIKEN Advanced Science Institute

Journal information

1. Katsura, H., Nagaosa, N. & Lee, P.A. Theory of the thermal Hall effect in quantum magnets. Physical Review Letters 104, 066403 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6264
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>