Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

H.E.S.S. discovers radio galaxy shining in gamma light

30.03.2009
An international team of astrophysicists, for the first time, has observed very-high-energy gamma radiation from a nearby active galactic nucleus, the radio galaxy Centaurus A.

The weak radiation has been discovered by the H.E.S.S. telescopes in Namibia, currently one of the most sensitive instruments of high-energy astrophysics. (The Astrophysical Journal Letters 695, L40-L44, 2009)

Active galactic nuclei are the most energetic objects in the Universe. Around the suspected supermassive black hole they harbour at their centre, charged particles (electrons and protons) may be accelerated to velocities close to the speed of light and ejected in oppositely directed jets. Centaurus A, located in the constellation Centaurus, is one of the brightest galaxies in the night sky and the nearest radiogalaxy with an active nucleus. Its proximity enables unique studies of the active centre and its surrounding. Centaurus A covers an area of the sky more than 100 times the size of the area of the full moon - but this extended structure only glows in radio frequencies with only the host galaxy being visible to the naked eye.

The telescopes of the High Energy Stereoscopic System (H.E.S.S.) in Namibia have now, for the first time, observed very-high-energy gamma-ray emission from Centaurus A. H.E.S.S. consists of four identical telescopes with 13 m mirror diameter and is operated by an international collaboration, coordinated by the Max-Planck-Institut für Kernphysik in Heidelberg. Ultrafast cameras record the weak blue flashes that arise when very-high-energy gamma-ray photons are absorbed in the atmosphere and create cascades of subatomic particles, so-called particle showers.

The high-energy gamma radiation from Centaurus A is so weak that more than 100 hours of observation time were needed to obtain a picture. The detected emission originates from the centre of the galaxy and the inner parts of the jets. With the current data, however, it is not yet possible to identify the exact origin of the emission. These gamma rays - a trillion times more energetic than visible light - are produced, it is thought, when particles, accelerated to extreme energies in the vicinity of a black hole, interact with radiation fields or the surrounding medium.

The detection of very-high-energy gamma rays from Centaurus A poses the more general question of whether such emission might be a common feature of active galactic nuclei. To answer this question, further observations of Centaurus A and of other active galactic nuclei are necessary. In that case, future instruments with higher sensitivity will be able to detect many more sources than previously anticipated and so better determine the processes involved.

A very large telescope with a mirror diameter of 30 m to extend the H.E.S.S. experiment is already under construction and will start observation in 2010. For the future, the European project Cherenkov Telescope Array (CTA) is planned. This gamma-ray observatory will consist of roughly 100 telescopes, leading to an improvement in sensitivity by a factor 10 compared to the current generation of instruments.

Contact:

Dr. Martin Raue
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-470
E-Mail: martin.raue@mpi-hd.pg.de
Prof. Dr. Werner Hofmann
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-330
E-Mail: Werner.Hofmann@mpi-hd.mpg.de
Prof. Dr. Felix Aharonian
Institute for Advanced Studies, Dublin, Ireland
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-485
E-Mail: Felix.Aharonian@mpi-hd.mpg.de
Jean-Phillipe Lenain
LUTH - OBSPM, Paris, France
Tel.: +33 1 45 07 74 19
E-Mail: jean-philippe.lenain@obspm.fr
Weitere Informationen:
http://www.iop.org/EJ/abstract/1538-4357/695/1/L40 original article
http://arxiv.org/abs/0903.1582 preprint server
http://www.mpi-hd.mpg.de/hfm/HESS/ H.E.S.S. Experiment Homepage
http://www.obspm.fr/actual/nouvelle/mar09/cena.en.shtml l'Observatoire de Paris
http://www.eso.org/gallery/v/ESOPIA/Galaxies/phot-03a-09-fullres.tif.html Detailed explanations, enlarged resolution

http://www.mpifr-bonn.mpg.de/public/pr/pic-cena-dt.html MPIfR, Bonn, press information about the image

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>