Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


H.E.S.S. discovers radio galaxy shining in gamma light

An international team of astrophysicists, for the first time, has observed very-high-energy gamma radiation from a nearby active galactic nucleus, the radio galaxy Centaurus A.

The weak radiation has been discovered by the H.E.S.S. telescopes in Namibia, currently one of the most sensitive instruments of high-energy astrophysics. (The Astrophysical Journal Letters 695, L40-L44, 2009)

Active galactic nuclei are the most energetic objects in the Universe. Around the suspected supermassive black hole they harbour at their centre, charged particles (electrons and protons) may be accelerated to velocities close to the speed of light and ejected in oppositely directed jets. Centaurus A, located in the constellation Centaurus, is one of the brightest galaxies in the night sky and the nearest radiogalaxy with an active nucleus. Its proximity enables unique studies of the active centre and its surrounding. Centaurus A covers an area of the sky more than 100 times the size of the area of the full moon - but this extended structure only glows in radio frequencies with only the host galaxy being visible to the naked eye.

The telescopes of the High Energy Stereoscopic System (H.E.S.S.) in Namibia have now, for the first time, observed very-high-energy gamma-ray emission from Centaurus A. H.E.S.S. consists of four identical telescopes with 13 m mirror diameter and is operated by an international collaboration, coordinated by the Max-Planck-Institut für Kernphysik in Heidelberg. Ultrafast cameras record the weak blue flashes that arise when very-high-energy gamma-ray photons are absorbed in the atmosphere and create cascades of subatomic particles, so-called particle showers.

The high-energy gamma radiation from Centaurus A is so weak that more than 100 hours of observation time were needed to obtain a picture. The detected emission originates from the centre of the galaxy and the inner parts of the jets. With the current data, however, it is not yet possible to identify the exact origin of the emission. These gamma rays - a trillion times more energetic than visible light - are produced, it is thought, when particles, accelerated to extreme energies in the vicinity of a black hole, interact with radiation fields or the surrounding medium.

The detection of very-high-energy gamma rays from Centaurus A poses the more general question of whether such emission might be a common feature of active galactic nuclei. To answer this question, further observations of Centaurus A and of other active galactic nuclei are necessary. In that case, future instruments with higher sensitivity will be able to detect many more sources than previously anticipated and so better determine the processes involved.

A very large telescope with a mirror diameter of 30 m to extend the H.E.S.S. experiment is already under construction and will start observation in 2010. For the future, the European project Cherenkov Telescope Array (CTA) is planned. This gamma-ray observatory will consist of roughly 100 telescopes, leading to an improvement in sensitivity by a factor 10 compared to the current generation of instruments.


Dr. Martin Raue
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-470
Prof. Dr. Werner Hofmann
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-330
Prof. Dr. Felix Aharonian
Institute for Advanced Studies, Dublin, Ireland
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49-6221-516-485
Jean-Phillipe Lenain
LUTH - OBSPM, Paris, France
Tel.: +33 1 45 07 74 19
Weitere Informationen: original article preprint server H.E.S.S. Experiment Homepage l'Observatoire de Paris Detailed explanations, enlarged resolution MPIfR, Bonn, press information about the image

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>