The guiding of light: A new metamaterial device steers beams along complex pathways

Using a composite metamaterial to deliver a complex set of instructions to a beam of light, Boston College physicists have created a device to guide electromagnetic waves around objects such as the corner of a building or the profile of the eastern seaboard.

As directed by the researchers' novel device, these beams continue to behave as if traveling in a straight line. In one computer simulation, Assistant Professor of Physics Willie J. Padilla and researcher Nathan Landy revealed the device could steer a beam of light along the boundary of the US, stretching from Michigan to Maine, down the seaboard, around Florida and into the Louisiana bayou, the researchers report in the upcoming edition of the journal Optics Express.

The researchers accomplished their feat by developing a much more precise set of instructions, which create a grid-like roadmap capable of twisting and turning a beam of light around objects or space. Their discovery is an extension of earlier metamaterial “cloaking” techniques, which have conjured up images of the Harry Potter character disappearing beneath his invisibility cloak.

Padilla and Landy report developing a space-mapping technique that delivers greater precision and efficiency guiding light along pathways that previously were too complex to sustain – from 90-degree angles to the rugged coastal profile of Maine. Furthermore, they've built this new device using relatively common dielectric materials, such as silicon.

“Our method combines the novel effects of transformational optics with the practicality of dielectric construction,” Padilla and Landy report. “We show that our structures are capable of guiding light in an almost arbitrary fashion over an unprecedented range of frequencies.”

The discovery builds upon a decade-long revolution in electromagnetics brought about by the emergence of metamaterials. Constructed from artificial composites, metamaterials have exhibited effects such as directing light at a negative index of refraction.

Researchers have combined metamaterials with artificial optical devices – also known as transformational optics – to demonstrate the “invisibility cloak” effect, essentially directing light around a space and effectively masking its existence. In addition, other researchers have used a method known as quasi-conformal mapping and very complex metamaterials to issue a somewhat imprecise set of instructions that create another space-cloaking effect.

Media Contact

Ed Hayward EurekAlert!

More Information:

http://www.bc.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors