Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GTRI researchers design and test microfabricated planar ion traps

26.05.2010
Despite a steady improvement in the speed of conventional computers during the last few decades, certain types of problems remain computationally difficult to solve.

Quantum computers hold the promise of offering a new route to solving some classes of these problems, such as breaking encryptions. The tremendous computing power of these devices stems from their use of quantum systems, called "qubits," which can exist in a "superposition" of two states at the same time – in stark contrast to the transistors in conventional computers that can only be in the state "0" or "1".

"Though a practical quantum computer may still be decades away, research being conducted today is laying the groundwork for such a device by bridging the vast gap between the theory and practice of quantum information processing," said Dick Slusher, a principal research scientist at the Georgia Tech Research Institute (GTRI) and director of the Georgia Tech Quantum Institute.

One path toward creating quantum computers is to use trapped ions as the qubits. However, it is currently difficult to scale up conventional ion traps into an array large enough to create a useful quantum computer.

At GTRI, researchers are designing, fabricating and testing planar ion traps that can be more readily combined into large, interconnected trap arrays. Details of the research effort, led by Slusher and GTRI senior research scientist Alexa Harter, were presented at the annual meeting of the American Physical Society's Division of Atomic Molecular and Optical Physics on May 26 and 27.

The presentations were made by GTRI postdoctoral fellow Charlie Doret, GTRI research scientist Arkadas Ozakin and Georgia Tech electrical and computer engineering graduate student Fayaz Shaikh. This research is funded by the Intelligence Advanced Research Projects Activity (IARPA) and the Defense Advanced Research Projects Agency (DARPA) through contracts with the Army Research Office.

GTRI's microfabricated planar ion traps employ a combination of radio-frequency signals and static voltages applied to aluminum electrodes that are layered on silicon wafers.

"These planar trap geometries are advantageous because they are scalable to large systems of ions and also offer improved laser access compared to currently available traps," said Doret.

Lasers are applied to the ions to induce "entanglement" – a quantum mechanical property whereby the states involved cannot be completely described independently. Using systems of trapped ions, researchers have measured entanglement clearly and can preserve it for extended periods of time. To date, however, the largest number of entangled particles ever achieved in a quantum computer is eight calcium ions. At least thirty ions are required to perform calculations that cannot be realized on a classical computer, so a major challenge for the future is to increase the number of trapped ions that can interact.

The GTRI team has used state-of-the-art computer simulations of the electromagnetic trapping fields and the trapped ion motion to design versatile traps capable of holding many ions. Trap designs were improved using genetic algorithms that fed back to the shapes and spacing of trap electrodes to optimize trap depth and minimize heating when ions were transported between trapping zones.

Prototypes of the designs were fabricated with the help of Kevin Martin, a principal research scientist in the Georgia Tech Nanotechnology Research Center. The research team then tested the prototypes in GTRI's ion trapping laboratory, where calcium ions were first trapped in October 2009 using devices designed and fabricated at Georgia Tech.

Experimental data on trap loading efficiency, ion lifetime and ion shuttling efficiency were used to validate the designs and provide feedback for additional improvements.

The GTRI team is working with researchers at Duke University to integrate optics directly into the ion traps, while researchers at the Massachusetts Institute of Technology are testing the devices in a cryogenic environment.

In collaboration with the University of Maryland, GTRI researchers are also investigating the use of an array of trapped ions and/or ultra-cold atoms trapped in optical lattices for applications in quantum simulation.

"We still have much to learn about individual quantum systems, how to connect them, how to control them, how to measure them and how to fix the inevitable errors," added Slusher.

Future work at GTRI will include testing new trap designs, such as linear traps optimized for holding long ion chains.

"This field requires a multidisciplinary effort and Georgia Tech has the synergy and strengths in the technology and science areas and the fabrication facilities to make real progress," added Slusher.

This material is based upon work supported by the Intelligence Advanced Research Projects Activity (IARPA) Scaled Multiplexed Ion Trap project under U.S. Army Award No. W911NF-08-1-0315, and the Defense Advanced Research Projects Agency (DARPA) Optical Lattice Emulator program under U.S. Army Award No. W911NF-07-1-0576. Any opinions, findings, conclusions or recommendations expressed in this article are those of the researchers and do not necessarily reflect the views of the U.S. Army.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>