Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group dynamics of atoms -- DESY scientists observe the collective Lamb shift for the first time

14.05.2010
An ensemble of identical atoms submitted to irradiation of light behaves differently than a single atom. Jointly, the atoms emit light at a lower frequency than a single atom would do.

This effect, the so-called collective Lamb shift, was recently observed by a research team headed by Dr. Ralf Röhlsberger from the Helmholtz research centre DESY. The scientists from DESY, ESRF (France) and University of Leuven (Belgium) provided evidence of an effect that theorists predicted already more than 35 years ago, but could not be experimentally proved so far. The results of this experiment carried out at ESRF in Grenoble are published in the current issue of Science.

The Lamb shift is a small difference of the oscillation frequency of electrons in the atom. It becomes visible when light excites atoms to radiate. The frequency shift occurs when the excited atom emits and re-absorbs its light several times before returning to its ground state. The discovery of the Lamb shift in hydrogen in 1947 laid the foundation for the development of quantum electrodynamics (QED) as a unified theory of interaction of light and matter. For this discovery, the physicist Willis Lamb received the Nobel Prize in 1955.

When an ensemble of identical atoms is excited to radiate, it is possible that the emitted light of an atom is not only absorbed and re-emitted by the single atom but also by other atoms of the ensemble. Therefore, the light emitted by these atoms has a lower energy and exhibits a distinct red shift compared to the light that a single isolated atom would emit.

For their experiments, Röhlsberger and his team of researchers developed a new measurement method. They placed an ensemble of 57Fe atoms between two platinum mirrors separated only by a few nanometres and irradiated this array with X-ray radiation. And in fact, the predicted collective frequency shift could be measured in this way, even though it was believed for a long time that the atoms must not be separated by more than a wavelength. The researchers’ group took advantage of the fact that that the radiation of 57Fe atoms is enormously intensified, making the collective Lamb shift clearly visible. With the help of Mössbauer spectroscopy, the shift could be determined very precisely. The measured values are in excellent agreement with theoretical predictions.

This experimental method also offers new possibilities to study collective effects in the interaction of light and matter. Thus, the researchers observed that the light from the ensemble of atoms was emitted almost 100 times faster than from a single isolated atom. This phenomenon is called superradiance. Superradiance enables a very efficient energy transfer between light and matter and it may play an important role for designing more efficient solar cells and in fast optical information processing.

Dr. Thomas Zoufal | idw
Further information:
http://www.desy.de/

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>