Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking optical device could enhance optical information processing, computers

07.04.2014

At St. Paul's Cathedral in London, a section of the dome called the Whispering Gallery makes a whisper audible from the other side of the dome as a result of the way sound waves travel around the curved surface.

Researchers at Washington University in St. Louis have used the same phenomenon to build an optical device that may lead to new and more powerful computers that run faster and cooler.


This is a diagram of the optical diode developed by Lan Yang, Ph.D., associate professor of electrical systems engineering, and her collaborators.

Credit: Lan Yang

Lan Yang, PhD, associate professor of electrical and systems engineering, and her collaborators have developed an essential component of these new computers that would run on light. Their work brings predictions from recently formulated theoretical physics into real world applications.

The results of their research appear April 6 in Nature Physics.

Yang's group has created an optical diode by coupling tiny doughnut shaped optical resonators — one with gain and the other with loss — on a silicon chip. "This diode is capable of completely eliminating light transmission in one direction and greatly enhancing light transmission in the other nonreciprocal light transmission," says Bo Peng, a graduate student in Yang's group and the paper's lead author.

An electrical diode prevents electricity from backflow along a wire providing protection to crucial parts of an electronic circuit or processor; an optical diode does the same thing with light.

"We believe that our discovery will benefit many other fields involving electronics, acoustics, plasmonics and meta-materials," Yang says. "Coupling of so-called loss and gain devices using PT (parity-time)-symmetry could enable such advances as cloaking devices, stronger lasers that need less input power, and perhaps detectors that could 'see' a single atom."

The principle of PT-symmetry is based upon mathematical theories advanced by Carl M. Bender, PhD, the Wilfred R. and Ann Lee Konneker Distinguished Professor of Physics in Arts & Sciences at Washington University.

Simply put, when a "lossy" system is coupled with a "gain" system such that loss of energy exactly equals gain at an equilibrium point, a "phase transition" occurs.

Applying the principles of PT symmetry leads optics to a completely different set of behaviors not predicted by conventional physics with only loss or only gain. The phenomena that occur at the "phase transition" are dramatic and hitherto unexpected, Yang says.

To make their optical diode, Sahin Kaya Ozdemir, PhD, a research scientist in Yang's group and a key contributor to the paper, and Peng used two micro-resonators positioned so that light can flow from one to the other. One device is the "lossy" silica resonator.

The other incorporates the chemical element erbium into the silica structure for gain. Ozdemir says when erbium interacts with light of wavelength 1450 nm, it emits photons in the wavelength 1550 nm. A transmission detector set for 1550 nm will see a gain from this erbium-containing resonator.

When the rate of gain in one resonator exactly equals that of loss in the other, the phase transition occurs at a critical coupling distance between the resonators.

Most significantly, PT symmetry is broken, and the system shows a strong nonlinear behavior even at very weak input powers- input light gains intensity with a very steep non-linear slope. "As a result, time reversal symmetry is broken and light is able to move in only one direction— forward" says Yang.

"Time reversal symmetry is a fundamental physical rule that states that if light can travel in one direction, it must be able to travel in the opposite direction too. With this new optical diode, this is no longer the case," says Ozdemir. "Engineers traditionally use magneto-optics and high magnetic fields to break time reversal symmetry, here we do this using strong nonlinearity enabled by broken PT symmetry. With an input of only 1 microwatt, we show 17-fold enhancement of light transmission in one direction. There is no transmission in the other direction. Such a performance would not be possible without the use of resonant structures and PT-symmetric concepts."

"Our resonators are small enough to use in computers and future optical information processors. At present, we built our optical diodes from silica, which has very little material loss at the telecommunication wavelength. The concept can be extended to resonators made from other materials to enable easy CMOS compatibility." Peng says.

"More broadly, our paper shows how a concept with its roots in mathematical physics can be utilized to provide solutions to practical problems, opening new possibilities for controlling and manipulating light on-chip," the team says. "PT-symmetry breaking alone is not sufficient to have nonreciprocal response; operation in the nonlinear regime is also necessary. In the linear regime, light transmission is always reciprocal regardless of whether PT-symmetry is broken or not," cautions the team.

Yang and Ozdemir believe that the PT concept can be extended to electronics, acoustics and other fields to create one-way channels, and photonic devices with advanced functionalities, and they are already working on new experiments relying on PT-symmetry.

###

Peng B, Ozdemir S, Lei F, Monifi F, Gianfreda M, Long G, Fan S, Nori F, Bender C, Yang L. Parity-time-symmetric whispering gallery microcavities. Nature Physics, April 6, 2014, advance online publication. DOI: 10.1038/NPHYS2927.

Funding for this research was provided by the Army Research Office and the U.S. Department of Energy.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Neil Schoenherr | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: CMOS Groundbreaking physics processing transition wavelength

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>