Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ground-based detection of light from transiting exoplanets

15.01.2009
Transiting exoplanets are routinely detected when they pass in front of their parent star as viewed from the Earth, which only happens by chance.

The transit event causes a small drop in the observed starlight, which can then be detected. Fifty-five exoplanets have been detected this way since the observation of the first transiting planet HD 209458 b in 1999.

When the planet revolves around its star or when it goes behind, the light coming from the system also varies, though the resulting smaller modulation is much harder to detect. This is mostly due to the small amount of light emitted by these exoplanets which are believed to be as dark as coal and reflect little of the incoming starlight. Fortunately, some of these planets are very hot, thus emitting light, mostly at infrared wavelengths.

Up to now, detections of this kind have only been made using the Spitzer infrared space telescope. This week, Astronomy & Astrophysics is publishing the two first ground-based detections of thermal emission from transiting, hot-Jupiter exoplanets, from two independent teams of astronomers that used different approaches.

One team includes Ernst De Mooij and Ignas Snellen (University of Leiden, Netherlands) who used the William Hershel 4.2 meter telescope in La Palma (Canary Islands, Spain) to observe the star TrES-3 and its planet TrES-3b. To be able to detect the light coming from the planet, they observed the planet exactly at the time when it passes behind the star. They observed the event at infrared wavelengths, where the planet is at its brightest compared to the star (even if the planet is still much fainter than the star!) As they detected the light coming from the planet, they estimated the temperature of its atmosphere to about 2000 Kelvins. This indicates that the day side of the planet is extremely hot.

The other team, involving David Sing (IAP, France) and Mercedes Lopez-Morales (Carnegie Institution of Washington, USA), had a different approach. They looked at a much fainter star and its planet, OGLE-TR-56b. This planet is one of the most irradiated planets known so far, both because the planet is very close to the star and because the star is very hot. To detect the slight modulation in light that occurs when the planet passes behind its star, they used the 8 meter Very Large Telescope (ESO, Chile) and the 6.5 meter Magellan Telescopes (Las Campanas, Chile) and were able to observe this event at visible wavelengths. Indeed, the planet OGLE-TR-56b is heated so much by its star that it emits detectable amounts of light in the visible wavelengths, and not only in the infrared as TrES-3b does. Hence, Sing and Lopez-Morales measured the record-high temperature of a planetary atmosphere: 2700 Kelvins. As in the case of TrES-3b, such a high day-side temperature indicates that winds cannot redistribute the heat efficiently from the day side to the night side.

These two independent results are very interesting for astronomers and planetary scientists because they allow a direct probe of the temperature of these planetary atmospheres, and because they show that such measurements can be made from ground-based observatories, and not only when using space telescopes.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/355/42/lang,en/

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>