Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The great cosmic challenge

28.10.2008
Today cosmologists are challenging the world to solve a compelling statistical problem, to bring us closer to understanding the nature of dark matter and energy which makes up 95 per cent of the ‘missing’ universe.

The GRavitational lEnsing Accuracy Testing 2008 (GREAT08) PASCAL Challenge is being set by 38 scientists across 19 international institutions, with the aim of enticing other researchers to crack it by 30 April 2009.

“The GREAT08 PASCAL Challenge will help us answer the biggest question in cosmology today: what is the dark energy that seems to make up most of the universe? We realised that solving our image processing problem doesn’t require knowledge of astronomy, so we’re reaching out to attract novel approaches from other disciplines,” says Dr Sarah Bridle, UCL Physics and Astronomy, who is leading the challenge alongside Professor John Shawe-Taylor, Director of the UCL Centre for Computational Statistics and Machine Learning.

Twenty per cent of our universe seems to be made of dark matter, an unknown substance that is fundamentally different to the material making up our known world. Seventy-five per cent of the universe appears to be made of a completely mysterious substance dubbed dark energy. One possible explanation for these surprising observations is that Einstein’s law of gravity is wrong.

The method with the greatest potential to discover the nature of dark energy is gravitational lensing, in which the shapes of distant galaxies are distorted by the gravity of the intervening dark matter. “Streetlamps appear distorted by the glass in your bathroom window and you could use the distortions to learn about the varying thickness of the glass. In the same way, we can learn about the distribution of the dark matter by looking at the shapes of distant galaxies,” says Dr. Sarah Bridle. The observed galaxy images appear distorted and their shapes must be precisely disentangled from observational effects of sampling, convolution and noise. The problem being set, to measure these image distortions, involves image analysis and is ideally matched to experts in statistical inference, inverse problems and computational learning, amongst other scientific fields.

Cosmologists are gearing up for an exciting few years interpreting the results of new experiments designed to uncover the nature of dark energy, including the ground-based Dark Energy Survey (DES) in Chile and Pan-STARRS in Hawaii, and space missions by the European Space Agency (Euclid) and by NASA and the US Department of Energy (JDEM). Methods developed to solve the GREAT08 Challenge will help the analysis of this new data.

The GREAT08 Challenge contains 200 GB of simulated images, containing 30 million galaxy images. For the main competition, participants are asked to extract 5400 numbers from 170 GB of data. The competition can be accessed via the website www.great08challenge.info.

The GREAT08 Challenge Handbook will shortly be published in the journal Annals of Applied Statistics (AOAS).

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk/media/library/great08

Further reports about: GREAT08 Gravitational Lensing UCL cosmic challenge dark energy dark matter

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>