Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Gray’s Paradox” Solved: Researchers Discover Secret of Speedy Dolphins

26.11.2008
For decades the puzzle has prompted much attention, speculation, and conjecture in the scientific community. But now, armed with cutting-edge flow measurement technology, researchers at Rensselaer Polytechnic Institute have tackled the problem and conclusively solved Gray’s Paradox.

There was something peculiar about dolphins that stumped prolific British zoologist Sir James Gray in 1936.

He had observed the sea mammals swimming at a swift rate of more than 20 miles per hour, but his studies had concluded that the muscles of dolphins simply weren’t strong enough to support those kinds of speeds. The conundrum came to be known as “Gray’s Paradox.”

For decades the puzzle prompted much attention, speculation, and conjecture in the scientific community. But now, armed with cutting-edge flow measurement technology, researchers at Rensselaer Polytechnic Institute have tackled the problem and conclusively solved Gray’s Paradox.

“Sir Gray was certainly on to something, and it took nearly 75 years for technology to bring us to the point where we could get at the heart of his paradox,” said Timothy Wei, professor and acting dean of Rensselaer’s School of Engineering, who led the project. “But now, for the first time, I think we can safely say the puzzle is solved. The short answer is that dolphins are simply much stronger than Gray or many other people ever imagined.”

Wei is presenting his findings today at the 61st Annual Meeting of the American Physical Society (APS) Division of Fluid Dynamics in San Antonio, Texas. Collaborators on the research include Frank Fish, a biologist at West Chester University in Pennsylvania; Terrie Williams, a marine biologist at the University of California, Santa Cruz; Rensselaer undergraduate student Yae Eun Moon; and Rensselaer graduate student Erica Sherman.

After studying dolphins, Gray said in 1936 that they are not capable of producing enough thrust, or power-induced acceleration, to overcome the drag created as the mammal sped forward through the water. This drag should prevent dolphins from attaining significant speed, but simple observation proved otherwise – a paradox. In the absence of a sound explanation, Gray theorized that dolphin skin must have special drag-reducing properties.

More than 70 years later, Wei has developed a tool that conclusively measures the force a dolphin generates with its tail.

Wei created this new state-of-the-art water flow diagnostic technology by modifying and combining force measurement tools developed for aerospace research with a video-based flow measurement technique known as Digital Particle Image Velocimetry, which can capture up to 1,000 video frames per second.

Wei videotaped two bottlenose dolphins, Primo and Puka, as they swam through a section of water populated with hundreds of thousands of tiny air bubbles. He then used sophisticated computer software to track the movement of the bubbles. The color-coded results show the speed and in what direction the water is flowing around and behind the dolphin, which allowed researchers to calculate precisely how much force the dolphin was producing.

See a DPIV video of Primo here: http://www.rpi.edu/news/video/wei/dolphin.html

Wei also used this technique to film dolphins as they were doing tail-stands, a trick where the dolphins “walk” on water by holding most of their bodies vertical above the water while supporting themselves with short, powerful thrusts of their tails.

The results show that dolphins produce on average about 200 pounds of force when flapping their tail – about 10 times more force than Gray originally hypothesized.

“It turns out that the answer to Gray’s Paradox had nothing to do with the dolphins’ skin,” Wei said. “Dolphins can certainly produce enough force to overcome drag. The scientific community has known this for a while, but this is the first time anyone has been able to actually quantitatively measure the force and say, for certain, the paradox is solved.”

At peak performance, the dolphins produced between 300 and 400 pounds of force. Human Olympic swimmers, by comparison, peak at about 60 to 70 pounds of force, Wei said. He knows this for a fact because he has been working with U.S.A. Swimming over the past few years to use these same bubble-tracking DPIV and force-measuring techniques to better understand how elite swimmers interact with the water, and improve lap times.

“It was actually a natural extension to go from swimmers to dolphins,” said Wei, whose research ranges from aeronautical and hydrodynamic flow of vehicles to more biological topics dealing with the flow of cells and fluid in the human body.

The dolphins Wei filmed, Primo and Puka, are retired U.S. Navy dolphins who now live at the Long Marine Laboratory at UC Santa Cruz.

Wei said the research team will likely continue to investigate the flow dynamics and force generation of other marine animals, which could yield new insight into how different species have evolved as a result of their swimming proficiency.

“Maybe sea otters,” he said.

For more information on Wei’s work with Olympic swimmers, visit: http://news.rpi.edu/update.do?artcenterkey=2477

Michael Mullaney | Newswise Science News
Further information:
http://news.rpi.edu/update.do?artcenterkey=2477
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>