Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene's multi-colored butterflies


Writing in Nature Physics, a large international team led by Dr Artem Mishchenko and Sir Andre Geim from The University of Manchester shows that the electronic properties of graphene change dramatically if graphene is placed on top of boron nitride, also known as 'white graphite'.

One of the major challenges for using graphene in electronics applications is the absence of a band gap, which basically means that graphene's electrical conductivity cannot be switched off completely. Whatever researchers tried to do with the material so far, it remained highly electrically conductive.

A new direction that has recently emerged in graphene research is to try to modify graphene's electronic properties by combining it with other similar materials in multilayered stacks. This creates an additional landscape for electrons moving through graphene and, therefore, its electronic properties can change strongly.

The University of Manchester scientists have used capacitance measurements to probe these changes. They found that in combination with a magnetic field this creates numerous replicas of the original graphene spectrum. This phenomenon is known as the Hofstadter butterfly but it is the first time that well developed replica spectra have been observed.

The researchers found a wealth of unexpected physics in this new system. For example, the Hofstadter butterflies turned out to be strongly contorted, very different from the theoretical predictions. This happens because electrons feel not only the landscape but also each other, which modifies the butterfly.

Another phenomenon that the Manchester paper reports is that graphene starts behaving at very low temperatures like a tiny ferromagnet. Usually, the higher the magnetic field, the more magnetic graphene become. The Hofstadter butterfly in Manchester's capacitors leads to an unexpected oscillating behaviour of the ferromagnetism. As new replica spectra emerge and disappear, so does the ferromagnetism.

Dr Mishchenko said: "It is really a new nice electronic system both similar to and different from graphene. We expect many more surprises. Let us first understand what it is and then we start talking about possible applications."


The Manchester paper is a collaboration that involved researchers from the University of Lancaster in the UK, National High-Field Laboratory in Grenoble in France, National Institute for Materials Science in Japan and a University of Belo Horizonte in Brazil.

Daniel Cochlin | Eurek Alert!

Further reports about: Grenoble Mishchenko butterfly electrons graphene landscape phenomenon replicas spectra temperatures tiny

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>