Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Research: Electrons Moving along Defined Snake States

03.03.2015

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for numerous applications in the field of electronics. The research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel is publishing its results together with European colleagues in the renowned scientific journal “Nature Communications”.

For some years, the research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics has been looking at graphene, the “miracle material”.


The honeycomb grid provides an atomic graphene layer stretched between 2 electrical contacts (silver). The lower area contains two control electrodes (gold), which are used to generate an electrical

© Adapted with permission from Rickhaus et al., Nature Communications (2015).

Scientists at the University of Basel have developed methods that allow them to stretch, examine and manipulate layers of pure graphene. In doing so, they discovered that electrons can move in this pure graphene practically undisturbed – similar to rays of light. To lead the electrons from one specific place to another, they planned to actively guide the electrons along a predefined path in the material.

Electrical and magnetic fields combined

For the first time, the scientists in Basel have succeeded in switching the guidance of the electrons on and off and guiding them without any loss. The mechanism applied is based on a property that occurs only in graphene. Combining an electrical field and a magnetic field means that the electrons move along a snake state. The line bends to the right, then to the left. This switch is due to the sequence of positive and negative mass – a phenomenon that can only be realized in graphene and could be used as a novel switch.

“A nano-switch of this type in graphene can be incorporated into a wide variety of devices and operated simply by altering the magnetic field or the electrical field,” comments Professor Christian Schönenberger on the latest results from his group. Teams of physicists from Regensburg, Budapest and Grenoble were also involved in the study published in “Nature Communications”.

Material with special properties

Graphene is a very special material with promising properties. It is made up of a single layer of carbon atoms but is still very mechanically durable and resistant. Its excellent electrical conductivity in particular makes graphene the subject of research by numerous teams of scientists around the world.

The particular properties of this material were examined theoretically several decades ago. However, it was not until 2004 that physicists Andre Geim and Kostya Novoselov succeeded in producing graphene for experimental tests. The two researchers used scotch tape to peel away individual two-dimensional graphene layers from the original material, graphite. They received the 2010 Nobel Prize for Physics for this seemingly simple method, which enabled experimental graphene research for the first time. Since then, researchers worldwide have perfected the production process with tremendous speed.

Original source
Peter Rickhaus, Peter Makk, Ming-Hao Liu, Endre Tovari, Markus Weiss, Romain Maurand, Klaus Richter, and Christian Schönenberger
Snake trajectories in ultraclean graphene p–n junctions
Nature Communications 6:6470, published 3 March 2015, doi: 10.1038/ncomms7470

Further Information
Prof. Dr. Christian Schönenberger, University of Basel/Swiss Nanoscience Institute, phone: +41 61 267 36 90, email: christian.schoenenberger@unibas.ch

Weitere Informationen:

http://www.nature.com/ncomms/2015/150303/ncomms7470/full/ncomms7470.html - Abstract & Full Text
https://nanoelectronics.unibas.ch - Research group Prof. Dr. Christian Schönenberger

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>