Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Research: Electrons Moving along Defined Snake States

03.03.2015

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for numerous applications in the field of electronics. The research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel is publishing its results together with European colleagues in the renowned scientific journal “Nature Communications”.

For some years, the research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics has been looking at graphene, the “miracle material”.


The honeycomb grid provides an atomic graphene layer stretched between 2 electrical contacts (silver). The lower area contains two control electrodes (gold), which are used to generate an electrical

© Adapted with permission from Rickhaus et al., Nature Communications (2015).

Scientists at the University of Basel have developed methods that allow them to stretch, examine and manipulate layers of pure graphene. In doing so, they discovered that electrons can move in this pure graphene practically undisturbed – similar to rays of light. To lead the electrons from one specific place to another, they planned to actively guide the electrons along a predefined path in the material.

Electrical and magnetic fields combined

For the first time, the scientists in Basel have succeeded in switching the guidance of the electrons on and off and guiding them without any loss. The mechanism applied is based on a property that occurs only in graphene. Combining an electrical field and a magnetic field means that the electrons move along a snake state. The line bends to the right, then to the left. This switch is due to the sequence of positive and negative mass – a phenomenon that can only be realized in graphene and could be used as a novel switch.

“A nano-switch of this type in graphene can be incorporated into a wide variety of devices and operated simply by altering the magnetic field or the electrical field,” comments Professor Christian Schönenberger on the latest results from his group. Teams of physicists from Regensburg, Budapest and Grenoble were also involved in the study published in “Nature Communications”.

Material with special properties

Graphene is a very special material with promising properties. It is made up of a single layer of carbon atoms but is still very mechanically durable and resistant. Its excellent electrical conductivity in particular makes graphene the subject of research by numerous teams of scientists around the world.

The particular properties of this material were examined theoretically several decades ago. However, it was not until 2004 that physicists Andre Geim and Kostya Novoselov succeeded in producing graphene for experimental tests. The two researchers used scotch tape to peel away individual two-dimensional graphene layers from the original material, graphite. They received the 2010 Nobel Prize for Physics for this seemingly simple method, which enabled experimental graphene research for the first time. Since then, researchers worldwide have perfected the production process with tremendous speed.

Original source
Peter Rickhaus, Peter Makk, Ming-Hao Liu, Endre Tovari, Markus Weiss, Romain Maurand, Klaus Richter, and Christian Schönenberger
Snake trajectories in ultraclean graphene p–n junctions
Nature Communications 6:6470, published 3 March 2015, doi: 10.1038/ncomms7470

Further Information
Prof. Dr. Christian Schönenberger, University of Basel/Swiss Nanoscience Institute, phone: +41 61 267 36 90, email: christian.schoenenberger@unibas.ch

Weitere Informationen:

http://www.nature.com/ncomms/2015/150303/ncomms7470/full/ncomms7470.html - Abstract & Full Text
https://nanoelectronics.unibas.ch - Research group Prof. Dr. Christian Schönenberger

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>