Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Research: Electrons Moving along Defined Snake States

03.03.2015

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for numerous applications in the field of electronics. The research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel is publishing its results together with European colleagues in the renowned scientific journal “Nature Communications”.

For some years, the research group led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics has been looking at graphene, the “miracle material”.


The honeycomb grid provides an atomic graphene layer stretched between 2 electrical contacts (silver). The lower area contains two control electrodes (gold), which are used to generate an electrical

© Adapted with permission from Rickhaus et al., Nature Communications (2015).

Scientists at the University of Basel have developed methods that allow them to stretch, examine and manipulate layers of pure graphene. In doing so, they discovered that electrons can move in this pure graphene practically undisturbed – similar to rays of light. To lead the electrons from one specific place to another, they planned to actively guide the electrons along a predefined path in the material.

Electrical and magnetic fields combined

For the first time, the scientists in Basel have succeeded in switching the guidance of the electrons on and off and guiding them without any loss. The mechanism applied is based on a property that occurs only in graphene. Combining an electrical field and a magnetic field means that the electrons move along a snake state. The line bends to the right, then to the left. This switch is due to the sequence of positive and negative mass – a phenomenon that can only be realized in graphene and could be used as a novel switch.

“A nano-switch of this type in graphene can be incorporated into a wide variety of devices and operated simply by altering the magnetic field or the electrical field,” comments Professor Christian Schönenberger on the latest results from his group. Teams of physicists from Regensburg, Budapest and Grenoble were also involved in the study published in “Nature Communications”.

Material with special properties

Graphene is a very special material with promising properties. It is made up of a single layer of carbon atoms but is still very mechanically durable and resistant. Its excellent electrical conductivity in particular makes graphene the subject of research by numerous teams of scientists around the world.

The particular properties of this material were examined theoretically several decades ago. However, it was not until 2004 that physicists Andre Geim and Kostya Novoselov succeeded in producing graphene for experimental tests. The two researchers used scotch tape to peel away individual two-dimensional graphene layers from the original material, graphite. They received the 2010 Nobel Prize for Physics for this seemingly simple method, which enabled experimental graphene research for the first time. Since then, researchers worldwide have perfected the production process with tremendous speed.

Original source
Peter Rickhaus, Peter Makk, Ming-Hao Liu, Endre Tovari, Markus Weiss, Romain Maurand, Klaus Richter, and Christian Schönenberger
Snake trajectories in ultraclean graphene p–n junctions
Nature Communications 6:6470, published 3 March 2015, doi: 10.1038/ncomms7470

Further Information
Prof. Dr. Christian Schönenberger, University of Basel/Swiss Nanoscience Institute, phone: +41 61 267 36 90, email: christian.schoenenberger@unibas.ch

Weitere Informationen:

http://www.nature.com/ncomms/2015/150303/ncomms7470/full/ncomms7470.html - Abstract & Full Text
https://nanoelectronics.unibas.ch - Research group Prof. Dr. Christian Schönenberger

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>