Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene can polarize light

Publication in Nature Photonics from the OPERA Photonique Department : Graphene can polarize light.

Graphene, an ultra-flat monolayer of carbon atoms in a hexagonal crystal lattice, has attracted a strong wave of research interest due to its unique electrical and photonic properties.

As the first two dimensional material in the world, two UK Scientists were awarded the 2010 Nobel Prize in physics since it completely changes how we look at things. Now, Dr. Han Zhang at the Service OPERA-photonique – Applied Science Faculty, ULB - in collaboration with Prof. Loh at the National University of Singapore demonstrates the world's thinnest polarizer, which relies on the coupling, guiding and polarizing of electromagnetic waves by graphene.

They claim that this breakthrough will someday allow the integration on all-photonic circuits for high-speed optical communications.

Optical polarizers are elementary components of coherent and quantum optical communications by splitting the polarization state of an optical signal. Nowadays, there are rising demands for high-speed optical communications based on mobiles, calling for the miniaturization of optoelectronic devices. However, conventional optical polarizers (sheet, prism and Brewster-angle polarizer) are expensive, bulky, and discrete and may require additional alignment.

Thanks to graphene’s ultra-broadband optical property induced by its exceptional energy band structure, as-demonstrated graphene polarizer shows very broad operation bandwidth, at least from visible to mid-infrared. By fabricating graphene polarizer, with combined advantages of low cost (down to several euros), compact footprint, ultra-fast relaxation time and broad operation range, they anticipate that this device will enable new architectures for on-chip high-speed optical communications.

In addition to the industrial potentials, this research published in Nature Photonic, on May 30th is of fundamental importance.

It tackles how light propagates along an ultra-thin two dimensional surface. By the virtue of fiber based optical channel, now we can readily uncover how graphene guides and interacts with electromagnetic waves, with polarizing effect attributed to the differential attenuation of two polarization modes. This new conceptual finding will definitely lead to new physics, for example, localized waves or surface plasmon in graphene lattice. In the following years, researchers from the photonics, plasmonics and nano-science research communities may find in this graphene polarizer structure as a new testing ground for the ideas and methods they have been researching on their own fields, paving the way for all-carbon photonic-plasmonics devices.

Full bibliographic information
Qiaoliang Bao, Han Zhang, Bing Wang, Zhenhua Ni, Candy Haley Yi Xuan Lim, Yu Wang, Ding Yuan Tang, Kian Ping Loh. Broadband graphene polarizer. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.102
Contact :
Han Zhang, Service OPERA-Photonique, ULB, +32 (0)2 650 44 96

Nancy Dath | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>