Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene can polarize light

Publication in Nature Photonics from the OPERA Photonique Department : Graphene can polarize light.

Graphene, an ultra-flat monolayer of carbon atoms in a hexagonal crystal lattice, has attracted a strong wave of research interest due to its unique electrical and photonic properties.

As the first two dimensional material in the world, two UK Scientists were awarded the 2010 Nobel Prize in physics since it completely changes how we look at things. Now, Dr. Han Zhang at the Service OPERA-photonique – Applied Science Faculty, ULB - in collaboration with Prof. Loh at the National University of Singapore demonstrates the world's thinnest polarizer, which relies on the coupling, guiding and polarizing of electromagnetic waves by graphene.

They claim that this breakthrough will someday allow the integration on all-photonic circuits for high-speed optical communications.

Optical polarizers are elementary components of coherent and quantum optical communications by splitting the polarization state of an optical signal. Nowadays, there are rising demands for high-speed optical communications based on mobiles, calling for the miniaturization of optoelectronic devices. However, conventional optical polarizers (sheet, prism and Brewster-angle polarizer) are expensive, bulky, and discrete and may require additional alignment.

Thanks to graphene’s ultra-broadband optical property induced by its exceptional energy band structure, as-demonstrated graphene polarizer shows very broad operation bandwidth, at least from visible to mid-infrared. By fabricating graphene polarizer, with combined advantages of low cost (down to several euros), compact footprint, ultra-fast relaxation time and broad operation range, they anticipate that this device will enable new architectures for on-chip high-speed optical communications.

In addition to the industrial potentials, this research published in Nature Photonic, on May 30th is of fundamental importance.

It tackles how light propagates along an ultra-thin two dimensional surface. By the virtue of fiber based optical channel, now we can readily uncover how graphene guides and interacts with electromagnetic waves, with polarizing effect attributed to the differential attenuation of two polarization modes. This new conceptual finding will definitely lead to new physics, for example, localized waves or surface plasmon in graphene lattice. In the following years, researchers from the photonics, plasmonics and nano-science research communities may find in this graphene polarizer structure as a new testing ground for the ideas and methods they have been researching on their own fields, paving the way for all-carbon photonic-plasmonics devices.

Full bibliographic information
Qiaoliang Bao, Han Zhang, Bing Wang, Zhenhua Ni, Candy Haley Yi Xuan Lim, Yu Wang, Ding Yuan Tang, Kian Ping Loh. Broadband graphene polarizer. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.102
Contact :
Han Zhang, Service OPERA-Photonique, ULB, +32 (0)2 650 44 96

Nancy Dath | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>