Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene can polarize light

31.05.2011
Publication in Nature Photonics from the OPERA Photonique Department : Graphene can polarize light.

Graphene, an ultra-flat monolayer of carbon atoms in a hexagonal crystal lattice, has attracted a strong wave of research interest due to its unique electrical and photonic properties.

As the first two dimensional material in the world, two UK Scientists were awarded the 2010 Nobel Prize in physics since it completely changes how we look at things. Now, Dr. Han Zhang at the Service OPERA-photonique – Applied Science Faculty, ULB - in collaboration with Prof. Loh at the National University of Singapore demonstrates the world's thinnest polarizer, which relies on the coupling, guiding and polarizing of electromagnetic waves by graphene.

They claim that this breakthrough will someday allow the integration on all-photonic circuits for high-speed optical communications.

Optical polarizers are elementary components of coherent and quantum optical communications by splitting the polarization state of an optical signal. Nowadays, there are rising demands for high-speed optical communications based on mobiles, calling for the miniaturization of optoelectronic devices. However, conventional optical polarizers (sheet, prism and Brewster-angle polarizer) are expensive, bulky, and discrete and may require additional alignment.

Thanks to graphene’s ultra-broadband optical property induced by its exceptional energy band structure, as-demonstrated graphene polarizer shows very broad operation bandwidth, at least from visible to mid-infrared. By fabricating graphene polarizer, with combined advantages of low cost (down to several euros), compact footprint, ultra-fast relaxation time and broad operation range, they anticipate that this device will enable new architectures for on-chip high-speed optical communications.

In addition to the industrial potentials, this research published in Nature Photonic, on May 30th is of fundamental importance.

It tackles how light propagates along an ultra-thin two dimensional surface. By the virtue of fiber based optical channel, now we can readily uncover how graphene guides and interacts with electromagnetic waves, with polarizing effect attributed to the differential attenuation of two polarization modes. This new conceptual finding will definitely lead to new physics, for example, localized waves or surface plasmon in graphene lattice. In the following years, researchers from the photonics, plasmonics and nano-science research communities may find in this graphene polarizer structure as a new testing ground for the ideas and methods they have been researching on their own fields, paving the way for all-carbon photonic-plasmonics devices.

Full bibliographic information
Qiaoliang Bao, Han Zhang, Bing Wang, Zhenhua Ni, Candy Haley Yi Xuan Lim, Yu Wang, Ding Yuan Tang, Kian Ping Loh. Broadband graphene polarizer. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.102
Contact :
Han Zhang, Service OPERA-Photonique, ULB
hzhang@ulb.ac.be, +32 (0)2 650 44 96

Nancy Dath | alfa
Further information:
http://www.ulb.ac.be

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>