Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene joins the race to redefine the ampere

A new joint innovation by the National Physical Laboratory (NPL) and the University of Cambridge could pave the way for redefining the ampere in terms of fundamental constants of physics. The world's first graphene single-electron pump (SEP), described in a paper today in Nature Nanotechnology, provides the speed of electron flow needed to create a new standard for electrical current based on electron charge.

The international system of units (SI) comprises seven base units (the metre, kilogram, second, Kelvin, ampere, mole and candela). Ideally these should be stable over time and universally reproducible. This requires definitions based on fundamental constants of nature which are the same wherever you measure them.

The present definition of the Ampere, however, is vulnerable to drift and instability. This is not sufficient to meet the accuracy needs of present and certainly future electrical measurement. The highest global measurement authority, the Conférence Générale des Poids et Mesures, has proposed that the ampere be re-defined in terms of the electron charge.

The frontrunner in this race to redefine the ampere is the single-electron pump (SEP). SEPs create a flow of individual electrons by shuttling them in to a quantum dot – a particle holding pen – and emitting them one at a time and at a well-defined rate. The paper published today describes how a graphene SEP has been successfully produced and characterised for the first time, and confirms its properties are extremely well suited to this application.

A good SEP pumps precisely one electron at a time to ensure accuracy, and pumps them quickly to generate a sufficiently large current. Up to now the development of a practical electron pump has been a two-horse race. Tuneable barrier pumps use traditional semiconductors and have the advantage of speed, while the hybrid turnstile utilises superconductivity and has the advantage that many can be put in parallel. Traditional metallic pumps, thought to be not worth pursuing, have been given a new lease of life by fabricating them out of the world's most famous super-material - graphene.

Previous metallic SEPs made of aluminium are very accurate, but pump electrons too slowly for making a practical current standard. Graphene's unique semimetallic two-dimensional structure has just the right properties to let electrons on and off the quantum dot very quickly, creating a fast enough electron flow - at near gigahertz frequency - to create a current standard. The Achillies heel of metallic pumps, slow pumping speed, has thus been overcome by exploiting the unique properties of graphene.

The scientist at NPL and Cambridge still need to optimise the material and make more accurate measurements, but today's paper marks a major step forward in the road towards using graphene to redefine the ampere.

The realisation of the ampere is currently derived indirectly from resistance or voltage, which can be realised separately using the quantum Hall effect and the Josephson Effect. A fundamental definition of the ampere would allow a direct realisation that National Measurement Institutes around the world could adopt. This would shorten the chain for calibrating current-measuring equipment, saving time and money for industries billing for electricity and using ionising radiation for cancer treatment.

Current, voltage and resistance are directly correlated. Because we measure resistance and voltage based on fundamental constants – electron charge and Planck's constant - being able to measure current would also allow us to confirm the universality of these constants on which many precise measurements rely.

Graphene is not the last word in creating an ampere standard. NPL and others are investigating various methods of defining current based on electron charge. But today's paper suggests graphene SEPs could hold the answer. Also, any redefinition will have to wait until the Kilogram has been redefined. This definition, due to be decided soon, will fix the value of electronic charge, on which any electron-based definition of the ampere will depend.

Today's paper will also have important implications beyond measurement. Accurate SEPs operating at high frequency and accuracy can be used to make electrons collide and form entangled electron pairs. Entanglement is believed to be a fundamental resource for quantum computing, and for answering fundamental questions in quantum mechanics.

Malcolm Connolly, a research associate based in the Semiconductor Physics group at Cambridge, says: "This paper describes how we have successfully produced the first graphene single-electron pump. We have work to do before we can use this research to redefine the ampere, but this is a major step towards that goal. We have shown that graphene outperforms other materials used to make this style of SEP. It is robust, easier to produce, and operates at higher frequency. Graphene is constantly revealing exciting new applications and as our understanding of the material advances rapidly, we seem able to do more and more with it."

This work was funded by an Engineering and Physical Sciences Research Council/National Physical Laboratory (NPL) Joint Postdoctoral Partnership (Grant No: EP/I029575/1 ).

David Lewis | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>