Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GRAPHENE-CA appointed an EU Future Emerging Technology Flagship Pilot

04.05.2011
A coordination action on graphene will be funded by the European Commission to develop plans for a 10-year, 1,000 million euro FET flagship. This is an ambitious, large-scale visionary research initiative, aiming at a breakthrough for technological innovation and economic exploitation based on graphene and related two-dimensional materials.

Graphene, a single layer of carbon atoms, may be the most amazing and versatile substance available to mankind. Stronger than diamond, yet lightweight and flexible, graphene enables electrons to flow much faster than silicon. It is also a transparent conductor, combining electrical and optical functionalities in an exceptional way.

Graphene can trigger a smart and sustainable carbon revolution, with profound impact in information and communication technology (ICT) and everyday life. Its unique properties will spawn innovation on an unprecedented scale and scope for high speed, transparent and flexible consumer electronics; novel information processing devices; biosensors; supercapacitors as alternatives to batteries; mechanical components; lightweight composites for cars and planes.

The groundbreaking experiments on graphene in 2004 by European scientists Andre Geim and Konstantin Novoselov were awarded the 2010 Nobel Prize in Physics. Their work has sparked a scientific explosion, best illustrated by the exponential growth of publications and patent applications related to graphene. Huge amounts of human resources and capital are being invested into graphene research and applications in the US, Japan, Korea, Singapore and elsewhere. The first products are expected to enter the market by 2014, according to estimates by Samsung.

The research effort of individual European research groups pioneered graphene science and technology, but a coordinated European level approach is needed to secure a major role for EU in this ongoing technological revolution.

The graphene flagship aims to bring together a large, focused, interdisciplinary European research community, acting as a sustainable incubator of new branches of ICT applications, ensuring that European industries will have a major role in this radical technology shift over the next 10 years. An effective transfer of knowledge and technology to industries will enable product development and production.

The graphene flagship already includes over 130 research groups, representing 80 academic and industrial partners in 21 European countries. The coordination action is lead by a consortium of nine partners who pioneered graphene research, innovation, and networking activities. Coordinated by Chalmers University of Technology in Sweden, it includes the Universities of Manchester, Lancaster, and Cambridge in the UK, the Catalan Institute of Nanotechnology in Spain, the Italian National Research Council, the European Science Foundation, AMO GmbH in Germany, and the Nokia corporation. The advisory council includes Nobel Laureates Andre Geim (University of Manchester), Konstantin Novoselov (University of Manchester), Albert Fert (THALES) and Klaus von Klitzing (Max-Planck Institute), the leading graphene theoretician Francisco Guinea (CSIC, Spain), as well as Luigi Colombo (Texas Instruments, USA) and Byung Hee Hong (SKK University, Korea), both pioneers of graphene mass production and graphene-based product development.

The pilot phase coordination action starts on May 1. Its main task is to pave the way for the full, 10 year, 1,000 million euro flagship both in terms of the organizational framework and a scientific and technological roadmap for research and innovation. The action plan for the FET Flagship will be submitted in 2012 to the European Commission, aiming for GRAPHENE to be one of the two flagships launched in 2013.

– We are convinced that exploiting the full potential of graphene will have huge impacts on society at large, and thrilled that the EU Commission shares our view and believes in our focused and open approach to moving forward, says Prof. Jari Kinaret, Chalmers University of Technology, the project leader of GRAPHENE-CA.

Project leader GRAPHENE-CA: Jari Kinaret, jari.kinaret@chalmers.se

Media relations: Christian Borg, christian.borg@chalmers.se, or +46-766-314235

More information on the EU Future Emerging Technology Flagship Initiative:

A GRAPHENE flagship pilot press conference will take place on 4 May, 13.00 CET at Budapest Congress and World Trade Center, room “Bartok”, as part of The European Future Technologies Conference and Exhibition, FET11. More info to be found here: http://www.fet11.eu/

Christian Borg | idw
Further information:
http://www.graphene-flagship.eu
http://cordis.europa.eu/fp7/ict/programme/fet/flagship/home_en.html
http://www.fet11.eu/

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>