Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GRAPHENE-CA appointed an EU Future Emerging Technology Flagship Pilot

04.05.2011
A coordination action on graphene will be funded by the European Commission to develop plans for a 10-year, 1,000 million euro FET flagship. This is an ambitious, large-scale visionary research initiative, aiming at a breakthrough for technological innovation and economic exploitation based on graphene and related two-dimensional materials.

Graphene, a single layer of carbon atoms, may be the most amazing and versatile substance available to mankind. Stronger than diamond, yet lightweight and flexible, graphene enables electrons to flow much faster than silicon. It is also a transparent conductor, combining electrical and optical functionalities in an exceptional way.

Graphene can trigger a smart and sustainable carbon revolution, with profound impact in information and communication technology (ICT) and everyday life. Its unique properties will spawn innovation on an unprecedented scale and scope for high speed, transparent and flexible consumer electronics; novel information processing devices; biosensors; supercapacitors as alternatives to batteries; mechanical components; lightweight composites for cars and planes.

The groundbreaking experiments on graphene in 2004 by European scientists Andre Geim and Konstantin Novoselov were awarded the 2010 Nobel Prize in Physics. Their work has sparked a scientific explosion, best illustrated by the exponential growth of publications and patent applications related to graphene. Huge amounts of human resources and capital are being invested into graphene research and applications in the US, Japan, Korea, Singapore and elsewhere. The first products are expected to enter the market by 2014, according to estimates by Samsung.

The research effort of individual European research groups pioneered graphene science and technology, but a coordinated European level approach is needed to secure a major role for EU in this ongoing technological revolution.

The graphene flagship aims to bring together a large, focused, interdisciplinary European research community, acting as a sustainable incubator of new branches of ICT applications, ensuring that European industries will have a major role in this radical technology shift over the next 10 years. An effective transfer of knowledge and technology to industries will enable product development and production.

The graphene flagship already includes over 130 research groups, representing 80 academic and industrial partners in 21 European countries. The coordination action is lead by a consortium of nine partners who pioneered graphene research, innovation, and networking activities. Coordinated by Chalmers University of Technology in Sweden, it includes the Universities of Manchester, Lancaster, and Cambridge in the UK, the Catalan Institute of Nanotechnology in Spain, the Italian National Research Council, the European Science Foundation, AMO GmbH in Germany, and the Nokia corporation. The advisory council includes Nobel Laureates Andre Geim (University of Manchester), Konstantin Novoselov (University of Manchester), Albert Fert (THALES) and Klaus von Klitzing (Max-Planck Institute), the leading graphene theoretician Francisco Guinea (CSIC, Spain), as well as Luigi Colombo (Texas Instruments, USA) and Byung Hee Hong (SKK University, Korea), both pioneers of graphene mass production and graphene-based product development.

The pilot phase coordination action starts on May 1. Its main task is to pave the way for the full, 10 year, 1,000 million euro flagship both in terms of the organizational framework and a scientific and technological roadmap for research and innovation. The action plan for the FET Flagship will be submitted in 2012 to the European Commission, aiming for GRAPHENE to be one of the two flagships launched in 2013.

– We are convinced that exploiting the full potential of graphene will have huge impacts on society at large, and thrilled that the EU Commission shares our view and believes in our focused and open approach to moving forward, says Prof. Jari Kinaret, Chalmers University of Technology, the project leader of GRAPHENE-CA.

Project leader GRAPHENE-CA: Jari Kinaret, jari.kinaret@chalmers.se

Media relations: Christian Borg, christian.borg@chalmers.se, or +46-766-314235

More information on the EU Future Emerging Technology Flagship Initiative:

A GRAPHENE flagship pilot press conference will take place on 4 May, 13.00 CET at Budapest Congress and World Trade Center, room “Bartok”, as part of The European Future Technologies Conference and Exhibition, FET11. More info to be found here: http://www.fet11.eu/

Christian Borg | idw
Further information:
http://www.graphene-flagship.eu
http://cordis.europa.eu/fp7/ict/programme/fet/flagship/home_en.html
http://www.fet11.eu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>