Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The good vibrations of nearby stars

27.10.2008
Satellite data sheds new light on the sun in Science

Some of the first data collected by the CoRoT space telescope mission, launched in December 2006, provides valuable information about the physical vibrations and surface characteristics of nearby stars that are similar to our Sun, researchers say. This novel information illustrates the great value of space-based observations, and provides astronomers with insights into the interior of our Sun, other stars, and the overall evolution of our galaxy.

The related report will be published by the journal Science on Friday, 24 October, and featured on the cover. Science is the journal of AAAS, the nonprofit science society.

Dr. Eric Michel from the Observatory of Paris-LESIA-CNRS and a large group of colleagues from across Europe and South America analyzed the data from the CoRoT satellite to determine that three nearby stars, all significantly hotter than the Sun, also have larger vibrations, or oscillations, and much finer surface texture, or granulation. With this unprecedented data, the researchers show that the stars' oscillations are about 1.5 times as vigorous as the Sun's, and their granulation is about three times finer. The observed oscillations, though much more intense than the Sun's, are still about 25% weaker than most models predicted.

These landmark results represent the first time researchers have been able to accurately gauge the oscillation amplitudes and granulation signatures of solar bodies in our universe, other than the Sun.

The initial discovery of oscillations in our Sun in the late 1970's led to the creation of "solar seismology," which has since been used to measure the movement and transport of heat around the Sun. Solar seismology led to rapid progress in understanding the Sun's internal structure, but eventually researchers hit a wall. Accurate measurements of solar-like oscillations require the collection of precise data from long, uninterrupted sequences of observations, making ground-based study impossible.

"Although the energy from the Sun is more or less constant over our lifetimes, even very small variability in its output can have important effects," says Brooks Hanson, deputy editor for physical sciences at Science Magazine. "Understanding that small variability is critical, for example, in predicting solar storms and space weather, and for resolving the causes of changes in Earth's climate… These observations [by Michel and colleagues], and more in the future, will provide the essential data for improving our understanding of the interior of the Sun, and stars in general."

The findings presented by Michel and colleagues are based on light curves obtained with the CoRoT satellite over a period of 60 days, and help to refine our understanding of stars and the Sun. These results "allow us to place our Sun within the bigger picture of the evolution of our galaxy and the local universe," says Ian Osborne, senior editor of Science Magazine.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: CoRoT CoRoT space telescope mission Sun nearby stars satellite data

More articles from Physics and Astronomy:

nachricht The dispute about the origins of terahertz photoresponse in graphene results in a draw
25.04.2018 | Moscow Institute of Physics and Technology

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>