Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The good vibrations of nearby stars

27.10.2008
Satellite data sheds new light on the sun in Science

Some of the first data collected by the CoRoT space telescope mission, launched in December 2006, provides valuable information about the physical vibrations and surface characteristics of nearby stars that are similar to our Sun, researchers say. This novel information illustrates the great value of space-based observations, and provides astronomers with insights into the interior of our Sun, other stars, and the overall evolution of our galaxy.

The related report will be published by the journal Science on Friday, 24 October, and featured on the cover. Science is the journal of AAAS, the nonprofit science society.

Dr. Eric Michel from the Observatory of Paris-LESIA-CNRS and a large group of colleagues from across Europe and South America analyzed the data from the CoRoT satellite to determine that three nearby stars, all significantly hotter than the Sun, also have larger vibrations, or oscillations, and much finer surface texture, or granulation. With this unprecedented data, the researchers show that the stars' oscillations are about 1.5 times as vigorous as the Sun's, and their granulation is about three times finer. The observed oscillations, though much more intense than the Sun's, are still about 25% weaker than most models predicted.

These landmark results represent the first time researchers have been able to accurately gauge the oscillation amplitudes and granulation signatures of solar bodies in our universe, other than the Sun.

The initial discovery of oscillations in our Sun in the late 1970's led to the creation of "solar seismology," which has since been used to measure the movement and transport of heat around the Sun. Solar seismology led to rapid progress in understanding the Sun's internal structure, but eventually researchers hit a wall. Accurate measurements of solar-like oscillations require the collection of precise data from long, uninterrupted sequences of observations, making ground-based study impossible.

"Although the energy from the Sun is more or less constant over our lifetimes, even very small variability in its output can have important effects," says Brooks Hanson, deputy editor for physical sciences at Science Magazine. "Understanding that small variability is critical, for example, in predicting solar storms and space weather, and for resolving the causes of changes in Earth's climate… These observations [by Michel and colleagues], and more in the future, will provide the essential data for improving our understanding of the interior of the Sun, and stars in general."

The findings presented by Michel and colleagues are based on light curves obtained with the CoRoT satellite over a period of 60 days, and help to refine our understanding of stars and the Sun. These results "allow us to place our Sun within the bigger picture of the evolution of our galaxy and the local universe," says Ian Osborne, senior editor of Science Magazine.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: CoRoT CoRoT space telescope mission Sun nearby stars satellite data

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>