Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news for nanomedicine: Quantum dots appear safe in pioneering study on primates

21.05.2012
Medical uses for quantum dots -- tiny luminescent crystals -- could include image-guided surgery, light-activated therapies and sensitive diagnostic tests
A pioneering study to gauge the toxicity of quantum dots in primates has found the tiny crystals to be safe over a one-year period, a hopeful outcome for doctors and scientists seeking new ways to battle diseases like cancer through nanomedicine.

The research, which will appear on May 20 in Nature Nanotechnology online, is likely the first to test the safety of quantum dots in primates. The study and information in this press release are embargoed until Sunday, May 20, 2012 at 1 p.m. U.S. Eastern Standard Time.

In the study, scientists found that four rhesus monkeys injected with cadmium-selenide quantum dots remained in normal health over 90 days. Blood and biochemical markers stayed in typical ranges, and major organs developed no abnormalities. The animals didn't lose weight.

Two monkeys observed for an additional year also showed no signs of illness.

Quantum dots are tiny luminescent crystals that glow brightly in different colors. Medical researchers are eyeing the crystals for use in image-guided surgery, light-activated therapies and sensitive diagnostic tests. Cadmium selenide quantum dots are among the most studied, with potential applications not only in medicine, but as components of solar cells, quantum computers, light-emitting diodes and more.

The new toxicity study -- completed by the University at Buffalo, the Chinese PLA General Hospital, China's ChangChun University of Science and Technology, and Singapore's Nanyang Technological University -- begins to address the concern of health professionals who worry that quantum dots may be dangerous to humans.

The authors caution, however, that more research is needed to determine the nanocrystals' long-term effects in primates; most of the potentially toxic cadmium from the quantum dots stayed in the liver, spleen and kidneys of the animals studied over the 90-day period.

"This is the first study that uses primates as animal models for in vivo studies with quantum dots," said paper coauthor Paras Prasad, UB professor of chemistry and medicine, and executive director of UB's Institute for Lasers, Photonics and Biophotonics (ILPB). "So far, such toxicity studies have focused only on mice and rats, but humans are very different from mice. More studies using animal models that are closer to humans are necessary."

The cadmium build-up, in particular, is a serious concern that warrants further investigation, said Ken-Tye Yong, a Nanyang Technological University assistant professor who began working with Prasad on the study as a postdoctoral researcher at UB.

Because of that concern, the best in-vivo applications for cadmium-selenide quantum dots in medicine may be the ones that use the crystals in a limited capacity, said Mark Swihart, a third coauthor and a UB professor of chemical and biological engineering. Image-guided surgery, which could involve a single dose of quantum dots to identify a tumor or other target area, falls into this category.

The new toxicity study was supported by the John R. Oishei Foundation, Air Force Office of Scientific Research, Singapore Ministry of Education, Nanyang Technological University, the Beijing Natural Science Foundation and the National Natural Science Foundation of China. The study's lead authors were Ling Ye of Chinese PLA General Hospital and Yong of Nanyang Technological University, who completed his PhD in chemical and biological engineering at UB in 2006.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>