Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Nanoparticles Improve Photodetector Performance

30.07.2013
Article in the Journal "Applied Physics Letters" Shows How to Boost Performance for Commonly Used Devices

The mineral molybdenum disulfide (MoS2), which, when solid, behaves in many ways like grease, has semiconducting properties that make it a promising alternative to silicon or graphene in electronic devices.

It also strongly absorbs visible light, and so it has been widely employed in light-sensing photodetectors, which are used in a wide range of technologies, such as environmental sensing, process control in factories, and optical communication devices.

Researchers at the National University of Singapore have now found a way to boost the performance of MoS2 photodetectors even further -- with nanoparticles of gold. They describe this improvement in the journal Applied Physics Letters, which is produced by AIP Publishing.

Wei Chen, an assistant professor of chemistry and physics, along with graduate student Jia Dan Lin, and their colleagues, applied a single, loosely arranged layer of gold nanoparticles to the top of a MoS2 photodetector. The gold layer, although less than 15 billionths of a meter thick (representing the diameter of each individual nanoparticle) and made up of fewer than 1000 individual particles, improved the photodetectors’ efficiency by a factor of three, according to Chen.

"We anticipate orders of magnitude higher improvement of MoS2’s sensitivity using a higher density of coated nanoparticles," Chen said.

Chen suspects that the plasmon oscillations (variations in the electron density) of individual nanoparticles -- which enhance the local optical field -- may be one reason for the improved performance of the photodetectors.

"The next step will focus on varying the materials used to make the nanoparticles, as well as their size, shape, and arrangement," Chen noted -- adjustments that will "tune" the plasmon resonance wavelength of the metal nanostructure arrays, making it possible for MoS2 photodetectors todetect multiple colors for the first time.

The article, "Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor colors" by Jiadan Lin, Hai Li, Hua Zhang and Wei Chen appears in the journal Applied Physics Letters. See: http://dx.doi.org/10.1063/1.4807658

Authors on this study are affiliated with National University of Singapore and Nanyang Technological University.

ABOUT THE JOURNAL
Applied Physics Letters, produced by AIP Publishing, features concise, up-to-date reports on significant new findings in applied physics. See: http://apl.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>