Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOCE completes early orbit phase

24.03.2009
ESA's GOCE satellite was formally declared ready for work at 01:00 CET on 20 March. During the critical Launch and Early Orbit Phase beginning with separation from its booster on 17 March, GOCE was checked out to confirm that all of its control systems are operating normally.
The end of the Launch and Early Orbit Phase (LEOP) came overnight after GOCE was switched to Fine Pointing Mode. This means that all of its systems are working normally and the satellite is ready for full commissioning of its scientific instruments. With the end of LEOP, normal communications between the satellite and the ground are now being provided by ESA's ESTRACK station at Kiruna, Sweden.

"Everything is working well and we have a healthy satellite. Today, we will end round-the-clock staffing in the Main Control Room and move the Flight Control Team to regular work-day operations in the Dedicated Control Room," said Flight Operations Director Pier Paolo Emanuelli speaking this morning at ESA's European Space Operations Centre (ESOC), Darmstadt, Germany.

A major aim of this week's LEOP work was to bring the Satellite-to-Satellite Tracking Instrument (SSTI) - a highly accurate GPS (Global Positioning Satellite) receiver - into full operation. Emanuelli confirmed that it is working normally.
"Switching on the SSTI was especially important, as this meant the satellite could start performing its own autonomous orbit determinations. SSTI identifies GOCE's position very accurately, and we need this functioning before we can bring the satellite into its final drag-free operations mode," he said.

First science data sets already received

In addition to providing realtime navigation data for flight control, SSTI is one of GOCE's two payload instruments and it is a very accurate scientific tool for recording and reconstructing the satellite's actual orbit. The first SSTI data have already been received at the Payload Data Ground Segment at ESA's Earth Observation Centre (ESRIN), Frascati, Italy.

"Receiving initial science data from SSTI so soon has been an excellent first step and, now that the SSTI is operating, we are already proceeding with commissioning of the scientific payload," said GOCE Mission Manager Rune Floberghagen, who worked in ESOC's Main Control Room alongside the Mission Control Team during LEOP to monitor progress.

"GOCE is operating very well, and we are already looking forward to commissioning our other main instrument, the Electrostatic Gravity Gradiometer, starting in mid-April. It's going to be a very busy but tremendously exciting time as we begin science operations," said Floberghagen.

In the coming weeks, the mission is expected to achieve a number of crucial milestones, including switching on the electric ion propulsion, switching into Drag-Free Attitude Control mode and lowering the orbit to the planned altitude of about 260 km.

Jocelyne Landeau-Constantin | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Operations/SEMZ8TJTYRF_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>