Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gluons don’t explain the spin surprise

New scattering data suggests that gluons make only a small contribution to the spin of protons and neutrons

Scientists have acquired more clues in the mystery of how the spin, or intrinsic angular momentum of a nucleon (proton or neutron), results from its constituent parts, quarks and gluons. Marco Stratmann at RIKEN’s Nishina Center for Accelerator-Based Science in Wako and co-workers (1) have used new scattering data to determine that the contribution from gluons is likely to be small.

Until about 20 years ago, it was assumed that the nucleon spin came about mainly from the sum of spins of its component quarks and antiquarks. This theory was discredited when scientists in the European Muon Collaboration at CERN, Switzerland, performed experiments scattering muons off nucleons.

“The result was very much off the theoretical expectation and has, ever since, been dubbed the ‘spin surprise’ or even ‘spin crisis’,” says Stratmann. “Quarks were shown to contribute only very little to the spin of the proton. This triggered a flurry of theoretical activity and motivated further experimental studies.”

RIKEN scientists have recently been involved in experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in the USA, with the aim of determining whether the ‘missing’ nucleon spin is provided by the gluon spin. If the gluon spin contribution is small, there must be a role for the orbital angular momenta of both quarks and gluons.

Now Stratmann and co-workers have presented the first theoretical analysis that includes data from the RHIC. Their work also considers data from past experiments in deep inelastic scattering (DIS), the most basic type of scattering that provided the first evidence that quarks exist, and semi-inclusive deep inelastic scattering (SIDIS), which provides separate information on quarks and antiquarks.

The researchers determined the probability density functions of quarks and gluons and used a complicated optimization procedure to fit the functions to the data as well as possible. Their results suggest that the gluons have relatively small spin polarization, and so do not account for the spin of the nucleon.

“The spin structure of polarized nucleons is still poorly known despite the recent advances in both theory and experiment,” says Stratmann, “but experiments will continue to provide data, in particular the two RHIC experiments STAR and PHENIX. Soon the RHIC will produce the first data with two identified particles in the detector which will allow us to map the gluon polarization as a function of the gluon's momentum very precisely, and uncertainties will hopefully shrink by a factor of two or more.”


1. De Florian, D., Sassot, R., Stratmann, M. & Vogelsang, W. Global analysis of helicity parton densities and their uncertainties. Physical Review Letters 101, 072001 (2008).

The corresponding author for this highlight is based at the RIKEN Radiation Laboratory

Saeko Okada | ResearchSEA
Further information:

Further reports about: Gluons Quarks RHIC Relativistic Heavy Ion Collider antiquarks neutrons nucleon spin protons

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>