Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Globular star clusters: The survivors of a massacre 13 billion years ago

14.02.2012
Our Milky Way galaxy is surrounded by some 200 compact groups of stars, containing up to a million stars each.

These globular clusters are almost as old as the universe itself and hold valuable information on how the first generations of stars and galaxies formed. Now a team of astronomers from Germany and the Netherlands have conducted a novel type of computer simulation that looked at how they were born - and they find that these giant clusters of stars are the only survivors of a 13 billion year-old massacre that destroyed many of their smaller siblings. The new work, led by Dr Diederik Kruijssen of the Max Planck Institute for Astrophysics in Garching appears in a paper in the journal Monthly Notices of the Royal Astronomical Society.

Globular star clusters have a remarkable characteristic: the typical number of stars they contain appears to be about the same throughout the Universe. This is in contrast to much younger stellar clusters, which can contain almost any number of stars, from fewer than 100 to many thousands. The team of scientists proposes that this difference can be explained by the conditions under which globular clusters formed early on in the evolution of their host galaxies.

The researchers ran simulations of isolated and colliding galaxies, in which they included a model for the formation and destruction of stellar clusters. When galaxies collide, they often generate spectacular bursts of star formation (“starbursts”) and a wealth of bright, young stellar clusters of many different sizes. As a result it was always thought that the total number of star clusters increases during starbursts. But the Dutch-German team found the opposite result in their simulations.

While the very brightest and largest clusters were indeed capable of surviving the galaxy collision due to their own gravitational attraction, the numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces that typically occur during starbursts. After the starburst had ended, the researchers were surprised to see that only clusters with high numbers of stars had survived. These clusters had all the characteristics that should be expected for a young population of globular clusters, as they would have looked about 11 billion years ago.

Dr Kruijssen comments: “It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them. This occurs not only in galaxy collisions, but should be expected in any starburst environment. In the early Universe, starbursts were commonplace – it therefore makes perfect sense that all globular clusters have approximately the same large number of stars. Their smaller brothers and sisters that didn’t contain as many stars were doomed to be destroyed.”

According to the simulations, most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. After this episode ended, the surviving globular clusters have lived quietly until the present day.

The researchers have further suggestions to test their ideas. Dr Kruijssen continues: “In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation. It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters.”

The simulations suggest that most of a globular cluster’s traits were established when it formed. The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. In that case, Dr Kruijssen believes, they can be used as fossils to shed more light on the conditions in which the first stars and galaxies were born.

Original publication:
Kruijssen et al, "Formation versus destruction: the evolution of the star cluster population in galaxy mergers", Monthly Notices of the Royal Astronomical Society, in press http://arxiv.org/abs/1112.1065
Science Contact:
Dr Diederik Kruijssen
Max-Planck Institute for Astrophysics
Garching, Germany
Tel: +49 (0)89 30000 2241
E-mail: kruijssenmpa-garching.mpg.de
Media Contact:
Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035
Email: rmras.org.uk
Dr Hannelore Hämmerle
Press officer
Max-Planck Institute for Astrophysics
Garching, Germany
Tel: +49 (0)89 30000 3980
E-mail: prmpa-garching.mpg.de

Dr Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpa-garching.mpg.de
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1202_aaa/news1202_aaa-en.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>