Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Globular star clusters: The survivors of a massacre 13 billion years ago

14.02.2012
Our Milky Way galaxy is surrounded by some 200 compact groups of stars, containing up to a million stars each.

These globular clusters are almost as old as the universe itself and hold valuable information on how the first generations of stars and galaxies formed. Now a team of astronomers from Germany and the Netherlands have conducted a novel type of computer simulation that looked at how they were born - and they find that these giant clusters of stars are the only survivors of a 13 billion year-old massacre that destroyed many of their smaller siblings. The new work, led by Dr Diederik Kruijssen of the Max Planck Institute for Astrophysics in Garching appears in a paper in the journal Monthly Notices of the Royal Astronomical Society.

Globular star clusters have a remarkable characteristic: the typical number of stars they contain appears to be about the same throughout the Universe. This is in contrast to much younger stellar clusters, which can contain almost any number of stars, from fewer than 100 to many thousands. The team of scientists proposes that this difference can be explained by the conditions under which globular clusters formed early on in the evolution of their host galaxies.

The researchers ran simulations of isolated and colliding galaxies, in which they included a model for the formation and destruction of stellar clusters. When galaxies collide, they often generate spectacular bursts of star formation (“starbursts”) and a wealth of bright, young stellar clusters of many different sizes. As a result it was always thought that the total number of star clusters increases during starbursts. But the Dutch-German team found the opposite result in their simulations.

While the very brightest and largest clusters were indeed capable of surviving the galaxy collision due to their own gravitational attraction, the numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces that typically occur during starbursts. After the starburst had ended, the researchers were surprised to see that only clusters with high numbers of stars had survived. These clusters had all the characteristics that should be expected for a young population of globular clusters, as they would have looked about 11 billion years ago.

Dr Kruijssen comments: “It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them. This occurs not only in galaxy collisions, but should be expected in any starburst environment. In the early Universe, starbursts were commonplace – it therefore makes perfect sense that all globular clusters have approximately the same large number of stars. Their smaller brothers and sisters that didn’t contain as many stars were doomed to be destroyed.”

According to the simulations, most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. After this episode ended, the surviving globular clusters have lived quietly until the present day.

The researchers have further suggestions to test their ideas. Dr Kruijssen continues: “In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation. It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters.”

The simulations suggest that most of a globular cluster’s traits were established when it formed. The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. In that case, Dr Kruijssen believes, they can be used as fossils to shed more light on the conditions in which the first stars and galaxies were born.

Original publication:
Kruijssen et al, "Formation versus destruction: the evolution of the star cluster population in galaxy mergers", Monthly Notices of the Royal Astronomical Society, in press http://arxiv.org/abs/1112.1065
Science Contact:
Dr Diederik Kruijssen
Max-Planck Institute for Astrophysics
Garching, Germany
Tel: +49 (0)89 30000 2241
E-mail: kruijssenmpa-garching.mpg.de
Media Contact:
Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035
Email: rmras.org.uk
Dr Hannelore Hämmerle
Press officer
Max-Planck Institute for Astrophysics
Garching, Germany
Tel: +49 (0)89 30000 3980
E-mail: prmpa-garching.mpg.de

Dr Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpa-garching.mpg.de
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1202_aaa/news1202_aaa-en.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>