Global network of new-generation telescopes will track astrophysical events as they happen

Using next-generation radio telescopes in Europe, South Africa and Western Australia, the 4 Pi Sky project will look for energetic black holes, colliding neutron stars, and astrophysical explosions all the way back to the first stars.

Professor Rob Fender of the School of Physics and Astronomy at Southampton, who leads the five-year programme, says: “The universe is a violent and dynamic environment in which explosions of massive stars can outshine an entire galaxy and black holes swallow whole stars.

“These high-energy bursts emit radio waves, which can be detected at vast distances. However, previous telescopes could only see a tiny fraction of the sky and missed 99 per cent of these important events. The new telescopes can monitor the whole sky and will find thousands of such events. These observations can shed light on phenomena at extremes of physics unachievable in laboratories on earth, and can act as cosmic searchlights, illuminating the 'dark ages' before galaxies were formed.

“This project might even help us identify the first sources of gravitational waves, and in turn test the most fundamental theories of gravity.”

Funded by the European Research Council, the 4 Pi Sky programme will use three radio telescopes – LOFAR (Low Frequency Array), which has sites across Europe, including at Chilbolton, Hampshire; MeerKAT in South Africa; and ASKAP in western Australia.

In a new departure for astronomy, scientists will be able to link from telescope to telescope to follow transient phenomena as the Earth rotates, using new software that will be developed to provide a ‘detect and alert’ system for all three facilities.

The project will also collaborate with ground-based optical telescopes and with the orbiting MAXI X-ray telescope, which is located on the International Space Station.

“The multi-wavelength dimension will provide us with crucial information on the nature of the radio sources,” says Professor Fender.

“Working with LOFAR, MeerKAT and ASKAP, and the optical and X-ray telescopes, we will build a global network to monitor the whole sky. Every time such an advance has happened in the past, exciting new discoveries have been made – who knows what we might find this time.”

Media Contact

Helene Murphy alfa

More Information:

http://www.lofar.org/

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors