First Global Geologic Map of Largest Moon in the Solar System Details an Icy World

A team of scientists led by Wes Patterson of the Johns Hopkins Applied Physics Laboratory (APL), Laurel, Md., and Geoffrey Collins of Wheaton College, Norton, Mass., has produced the first global geologic map of Ganymede, a Galilean moon of Jupiter.

Published by the U.S. Geological Survey, the map technically illustrates the varied geologic character of Ganymede’s surface, and is the first complete global geologic map of an icy, outer-planet moon. The map is available for download at http://pubs.usgs.gov/sim/3237/.

Patterson, Collins and colleagues used images from NASA’s Voyager and Galileo missions to create the map. It’s only the fourth of its kind covering a planetary satellite; similar maps exist for Earth’s moon as well as Jupiter’s moons Io and Callisto.

“By mapping all of Ganymede’s surface, we can more accurately address scientific questions regarding the formation and evolution of this truly unique moon,” says Patterson, a planetary scientist.

Since its discovery in January 1610, Ganymede has been the focus of repeated observation, first by Earth-based telescopes, and later by flyby missions and spacecraft orbiting Jupiter. These studies depict a complex icy world whose surface is characterized by the striking contrast between its two major terrain types: the dark, very old, highly cratered regions; and the lighter, somewhat younger (but still ancient) regions marked with an extensive array of grooves and ridges.

With a diameter of 3,280 miles (5,262 kilometers), Ganymede is larger than both planet Mercury and dwarf planet Pluto. It’s also the only satellite in the solar system known to have its own magnetosphere. The map details geologic features of the moon that formed and evolved over much of our solar system’s history. These features record evidence of Ganymede’s internal evolution, its dynamical interactions with the other Galilean satellites, and the evolution of the small bodies that have impacted Ganymede’s surface.

The new chart will be a valuable tool for researchers to compare the geologic characters of other icy moons, since almost any type of feature that is found on other icy satellites has a similar feature somewhere on Ganymede. And with a surface over half as large as all the land area on Earth, Ganymede offers a wide variety of locations to observe. “Ganymede also shows features that are ancient alongside much more recently formed features, adding historical diversity in addition to geographic diversity,” Collins says.

Along with Collins and Patterson, the Ganymede mapping team also includes Louise Prockter of APL; James Head, Brown University, Providence, R.I.; Robert Pappalardo, NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; Baerbel Lucchitta, USGS, Flagstaff, Ariz.; and Jonathan Kay, University of Idaho. NASA funded the project through its Outer Planets Research and Planetary Geology and Geophysics programs.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology.

Media Contact

Michael Buckley Newswise

More Information:

http://www.jhuapl.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors