Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glasperlenspiel: NIST Scientists Propose New Test for Gravity

03.09.2010
A new experiment proposed* by physicists at the National Institute of Standards and Technology (NIST) may allow researchers to test the effects of gravity with unprecedented precision at very short distances—a scale at which exotic new details of gravity's behavior may be detectable.

Of the four fundamental forces that govern interactions in the universe, gravity may be the most familiar, but ironically it is the least understood by physicists. While gravity's influence is well-documented on bodies separated by astronomical or human-scale distances, it has been largely untested at very close scales—on the order of a few millionths of a meter—where electromagnetic forces often dominate. This lack of data has sparked years of scientific debate.

"There are lots of competing theories about whether gravity behaves differently at such close range," says NIST physicist Andrew Geraci, "But it's quite difficult to bring two objects that close together and still measure their motion relative to each other very precisely."

In an attempt to sidestep the problem, Geraci and his co-authors have envisioned an experiment that would suspend a small glass bead in a laser beam "bottle," allowing it to move back and forth within the bottle. Because there would be very little friction, the motion of the bead would be exquisitely sensitive to the forces around it, including the gravity of a heavy object placed nearby.

According to the research team, the proposed experiment would permit the testing of gravity's effects on particles separated by 1/1,000 the diameter of a human hair, which could ultimately allow Newton's law to be tested with a sensitivity 100,000 times better than existing experiments.

Actually realizing the scheme—detailed in a new paper in Physical Review Letters—could take a few years, co-author Scott Papp says, in part because of trouble with friction, the old nemesis of short-distance gravity research. Previous experiments have placed a small object (like this experiment's glass bead) onto a spring or short stick, which have created much more friction than laser suspension would introduce, but the NIST team's idea comes with its own issues.

"Everything creates some sort of friction," Geraci says. "We have to make the laser beams really quiet, for one thing, and then also eliminate all the background gas in the chamber. And there will undoubtedly be other sources of friction we have not yet considered."

For now, Geraci says, the important thing is to get the idea in front of the scientific community.

"Progress in the scientific community comes not just from individual experiments, but from new ideas," he says. "The recognition that this system can lead to very precise force measurements could lead to other useful experiments and instruments."

* A.A. Geraci, S.B. Papp and J. Kitching. Short-range force detection using optically cooled levitated microspheres. Physical Review Letters, Aug. 30, 2010 (online). 105, 101101 (2010) DOI: 10.1103/PhysRevLett.105.101101

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>