Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gigantic mirror for X-radiation in outer space

28.09.2010
New PTB instrument measures the quality of the mirrors for the X-ray telescope IXO

It is to become the largest X-ray telescope ever: The International X-Ray Observatory (IXO), which has been planned in a cooperation between NASA, ESA and Japan's Aerospace Exploration Agency JAXA, will be launched into space in 2021 and provide the world with brand new information about black holes and, thus, about the origin of the universe.

Its dimensions are gigantic: The surface of the mirror alone, which is to capture, for example, the cosmic X-radiation of black holes, will be 1300 m2 in size. It will consist of commercially available silicon wafers with pores of a few millimetres underneath. The quality of these "hidden" surfaces will be tested at the Physikalisch-Technische Bundesanstalt (PTB) with a monochromatic X-ray pencil beam. The new measuring device has been installed at PTB's synchrotron radiation laboratory at BESSY II in Berlin-Adlershof.

eROSITA will do the preliminary work. The German-Russian experiment under the auspices of the Max Planck Institute for Extraterrestrial Physics will be launched into space in 2013. With the aid of a bundle of seven X-ray telescopes, eROSITA will search the whole sky for a specific kind of black hole: supermassive black holes which developed at the dawn of the universe - probably even before the development of the first stars.

Scientists expect that - among other things - approximately three million new black holes will be found with this mission. This will, for the first time, allow a complete overview of the formation and development of supermassive black holes to be given. IXO will then be responsible for their systematic investigation. In addition, the new space telescope is to provide much new information about neutron stars and stellar black holes, the second type of black hole which develops when especially massive stars explode. Due to the fact that such a venture is extremely expensive, in 2008 the space agencies of the USA, of Europe and Japan decided to realize this joint project from then on instead of three individual solutions.

IXO can capture the X-radiation of very distant black holes, because this kind of radiation penetrates - in an unhindered way - cosmic dust, which is the most frequently occurring impediment on the way. For that purpose, the mirror in the telescope must be very large, but at the same time light enough. IXO will have one single mirror with a collection surface of approx. 3 m², a focal length of 20 m and an angular resolution of less than 5 arc seconds. Due to the required grazing radiation incidence, the whole surface of the mirror must be approx. 1300 m². To construct this large surface in a stable and, at the same time, light way, the underneath of commercially available, highly polished silicon wafers will be provided with ribs to allow the wafers to be stacked in rigid blocks. Through this, pores with a cross-section of approximately 1 mm² are formed in which the radiation is reflected at the surface of the respective lower wafer. With respect to tangent errors and roughness, the quality of these "hidden" surfaces cannot be investigated as usual from above, but must be determined in the intended application geometry with X-ray reflection at grazing incident angles of approx. 1°. To investigate the reflecting surface of single pores, an X-ray pencil beam is required.

At the "X-ray pencil beam facility" (XPBF) at PTB's synchrotron radiation laboratory at BESSY II, which has recently been extended within the scope of a research cooperation with ESA, a monochromatic pencil beam with a typical diameter of 50 µm and a divergency of less than one arc second is now available for this purpose. It will characterize the X-ray lens systems for IXO at three different photon energies, i.e. at 1 keV, 2.8 keV and 7.6 keV. The lens systems can be adjusted or turned with a hexapod in vacuum with reproducibilities of 2 µm or below 1", respectively. The direct beam and the reflected beam are registered with a spatial resolving detector based on CCD at a distance of 5 m or 20 m from the lens system. For the last-mentioned distance, which corresponds to the intended focal length of IXO, a vertical movement of the CCD detector by more than 2 m has been implemented. First test measurements at this distance were already performed in May 2010, complete commissioning of the extended XPBF is planned for the beginning of November 2010.

Contact
Michael Krumrey, PTB Working Group 7.11 X-ray Radiometry,
phone: +49 (0)30 6392-5085,
E-mail: michael.krumrey@ptb.de
Current scientific publication
Krumrey, M.; Cibik, L.; Müller, P.; Bavdaz, M.; Wille, E.; Ackermann, M.; Collon, M. J.: X-ray pencil beam facility for optics characterization. Proc. SPIE 7732, 77324O (2010)

Michael Krumrey | EurekAlert!
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>