Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Webb Space Telescope Model to "Land" in Baltimore

14.10.2011
Baltimore's Maryland Science Center is going to be the "landing site" for the full-scale model of NASA's James Webb Space Telescope, and it's free for all to see.

The Webb telescope life-sized model is as big as a tennis court, and it's coming to the Maryland Science Center at Baltimore's Inner Harbor from October 14 through October 26, 2011. It's a chance for young and old to get a close-up look at the successor to the Hubble Space Telescope in the same size it will be launched into space.

The real James Webb Space Telescope is currently being built, but this model will be constructed in a couple of days. The real Webb will be the largest space telescope ever built. Once in orbit, the Webb telescope will look back in time more than 13 billion years to help us understand the formation of galaxies, stars, and planets.

Experts will be on hand to discuss the Webb telescope's deep-space mission, how it will observe distant galaxies and nearby stars and planets, and the progress made to date in building the observatory. Spokespeople will also

be available starting at 10 a.m. EDT and throughout the model exhibition. There will also be educational activities and an "Ask the Scientist" booth in front of the model during the daytime.

The Maryland Science Center is located at 601 Light Street, Baltimore, Md. 21230. For directions and more information, call the center at 410-685-5225.

The full-scale model of the Webb telescope was built by NASA's prime contractor to provide a better understanding of the size, scale, and complexity of the observatory. The model is constructed mainly of aluminum and steel, weighs 12,000 pounds, and is approximately 80 feet long, 40 feet wide, and 40 feet tall. The model requires two trucks to ship it, and assembly takes a crew of 12 approximately four days.

The Webb telescope will add to observations by earlier space telescopes, and stretch the frontiers of science with its discoveries. The model's size shows the telescope's complexity and how the observatory will enable the Webb telescope's unique mission.

For images and video, visit:

http://www.nasa.gov/topics/nasalife/features/webb-balto.html

For more information about the James Webb Space Telescope, visit:

http://webbtelescope.org/webb_telescope
http://www.jwst.nasa.gov
For a sped-up video of the construction of the Webb full-scale model, visit:
Download: http://svs.gsfc.nasa.gov/vis/a010000/a010500/a010570/index.html
View on You Tube: http://www.youtube.com/watch?v=EbCBeq2Rz9Q
For more information about astronomy at Baltimore's Inner Harbor, visit: http://hubblesite.org/baltimore-astronomy/

CONTACT:

Dwayne Brown/Trent Perrotto
NASA Headquarters, Washington
202-358-1726 / 202-358-0321
dwayne.c.brown@nasa.gov / trent.j.perrotto@nasa.gov
Lynn Chandler
Goddard Space Flight Center, Greenbelt, Md.
301-286-2806
lynn.chandler-1@nasa.gov
Ray Villard / Cheryl Gundy
Space Telescope Science Institute, Baltimore, Md.
410-338-4514 / 410-338-4707
villard@stsci.edu / gundy@stsci.edu

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>