Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant supernovae farthest ever detected

09.07.2009
Dying stars shed light on universe formation 11 billion years ago

UC Irvine cosmologists have found two supernovae farther away than any previously detected by using a new technique that could help find other dying stars at the edge of the universe.

This method has the potential to allow astronomers to study some of the very first supernovae and will advance the understanding of how galaxies form, how they change over time and how Earth came to be.

"When stars explode, they spew matter into space. Eventually, gravity collapses the matter into a new star, which could have planets such as Earth around it," said Jeff Cooke, McCue Postdoctoral Fellow in physics & astronomy, who reports his findings July 9 in the journal Nature.

The supernovae Cooke and colleagues found occurred 11 billion years ago. The next-farthest large supernova known occurred about 6 billion years ago.

A supernova occurs when a massive star (more than eight times the mass of the sun) dies in a powerful, bright explosion. Cooke studies larger stars (50 to 100 times the mass of the sun) that blow part of their mass into their surroundings before they die. When they finally explode, the nearby matter glows brightly for years.

Typically, cosmologists find supernovae by comparing pictures taken at different times of the same swath of sky and looking for changes. Any new light could indicate a supernova.

Cooke built upon this idea. He blended pictures taken over the course of a year, then compared them with image compilations from other years.

"If you stack all of those images into one big pile, then you can reach deeper and see fainter objects," Cooke said. "It's like in photography when you open the shutter for a long time. You'll collect more light with a longer exposure."

Doing this with images from the Canada-France-Hawaii Telescope in Hawaii, Cooke found four objects that appeared to be supernovae. He used a Keck telescope to look more closely at the spectrum of light each object emitted and confirmed they were indeed supernovae.

"The universe is about 13.7 billion years old, so really we are seeing some of the first stars ever formed," Cooke said.

Cooke and other scientists with UCI's Center for Cosmology last year discovered a cluster of galaxies in a very early stage of formation that occurred 11.4 billion years ago, the farthest of its kind ever detected. The galaxy proto-cluster, named LBG-2377, is giving cosmologists unprecedented insight into galaxy formation and the evolution of the universe.

UCI scientists Elizabeth Barton, James Bullock and Erik Tollerud, along with Mark Sullivan of Oxford University, Avishay Gal-Yam of the Benoziyo Center for Astrophysics in Israel, and Ray Carlberg of the University of Toronto, also contributed to the supernova study.

The research was funded by the National Science Foundation and generous donations from Gary McCue to the Center for Cosmology.

About the University of California, Irvine: UCI is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>