Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Star Goes Supervova - And is Smothered By Its Own Dust

14.10.2010
A giant star in a faraway galaxy recently ended its life with a dust-shrouded whimper instead of the more typical bang.

Ohio State University researchers suspect that this odd event -- the first one of its kind ever viewed by astronomers – was more common early in the universe.

It also hints at what we would see if the brightest star system in our galaxy became a supernova.

In a paper published online in the Astrophysical Journal, Christopher Kochanek, a professor of astronomy at Ohio State, and his colleagues describe how the supernova appeared in late August 2007, as part of the Spitzer Space Telescope Deep Wide Field Survey.

The astronomers were searching the survey data for active galactic nuclei (AGN), super-massive black holes at the centers of galaxies. AGN radiate enormous amounts of heat as material is sucked into the black hole. In particular, the astronomers were searching for hot spots that varied in temperature, since these could provide evidence of changes in how the material was falling into the black hole.

Normally, astronomers wouldn’t expect to find a supernova this way, explained then-Ohio State postdoctoral researcher Szymon Kozlowski. Supernovae release most of their energy as light, not heat.

But one very hot spot, which appeared in a galaxy some 3 billion light years from Earth, didn’t match the typical heat signal of an AGN. The visible spectrum of light emanating from the galaxy didn’t show the presence of an AGN, either – the researchers confirmed that fact using the 10-meter Keck Telescope in Hawaii.

Enormous heat flared from the object for a little over six months, then faded away in early March 2008 – another clue that the object was a supernova.

“Over six months, it released more energy that our sun could produce in its entire lifetime,” Kozlowski said.

The astronomers knew that if the source were a supernova, the extreme amount of energy it emitted would qualify it as a big one, or a “hypernova.” The temperature of the object was around 1,000 Kelvin (about 700 degrees Celsius) -- only a little hotter than the surface of the planet Venus. They wondered -- what could absorb that much light energy and dissipate it as heat?

The answer: dust, and a lot of it.

Using what they learned from the Spitzer survey, the astronomers worked backward to determine what kind of star could have spawned the supernova, and how the dust was able to partly muffle the explosion. They calculated that the star was probably a giant, at least 50 times more massive than our sun. Such massive stars typically belch clouds of dust as they near the end of their existence.

This particular star must have had at least two such ejections, they determined – one about 300 years before the supernova, and one only about four years before it. The dust and gas from both ejections remained around the star, each in a slowly expanding shell. The inner shell – the one from four years ago – would be very close to the star, while the outer shell from 300 years ago would be much farther away.

“We think the outer shell must be nearly opaque, so it absorbed any light energy that made it through the inner shell and converted it to heat,” said Kochanek, who is also the Ohio Eminent Scholar in Observational Cosmology.

That’s why the supernova showed up on the Spitzer survey as a hot dust cloud.

Krzysztof Stanek, professor of astronomy at Ohio State, said that stars probably choked on their own dust much more often in the distant past.

“These events are much more likely to happen in a small, low metallicity galaxy,” he said -- meaning a young galaxy that hadn’t been around long enough for its stars to fuse hydrogen and helium into the more complex chemicals that astronomers refer to as “metals.”

Still, Kozlowski added that more such supernovae will likely be found by NASA’s Wide-field Infrared Explorer (WISE), which was launched in December 2009. “I would expect WISE to see 100 of these events in two years, now that we know what to look for,” he said.

Because of the alignment of the galaxy with Earth and our sun, astronomers were not able to see what the event looked like to the naked eye while it was happening. But Kochanek believes that we might see the star brighten a decade or so from now. That’s how long it will take for the shockwave from the exploding star to reach the inner dust shell and slam it into the outer shell. Then we’ll have something to see here on Earth.

We do have at least one chance to see a similar light show closer to home, though.

“If Eta Carinae went supernova right now, this is what it would probably look like,” Kochanek said, referring to the brightest star system in our Milky Way Galaxy.

The two stars that make up Eta Carinae are 7,500 light years away, and they host a distinctive dust shell dubbed the Homunculus Nebula, among other layers of dust. Astronomers believe that the nebula was created when the larger of the two stars underwent a massive eruption around 1840, and that future eruptions are likely.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA.

This work was sponsored by NASA and the National Science Foundation. Kozlowski has since taken a new postdoctoral position at Warsaw University Observatory in Poland.

Editor’s note: An artist’s rendering of the supernova is available to accompany the story.

Contact: Christopher Kochanek, (614) 292-5954; Kochanek.1@osu.edu

Szymon Kozlowski, (614) 292-1773; simkoz@astronomy.ohio-state.edu or simkoz@astrouw.edu.pl

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>