Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Galaxy Hosts the Most Distant Supermassive Black Hole

02.09.2009
University of Hawaii (UH) astronomer Dr. Tomotsugu Goto and colleagues have discovered a giant galaxy surrounding the most distant supermassive black hole ever found.

The galaxy, so distant that it is seen as it was 12.8 billion years ago, is as large as the Milky Way galaxy and harbours a supermassive black hole that contains at least a billion times as much matter as our Sun. The scientists set out their results in a paper in the journal Monthly Notices of the Royal Astronomical Society later this month.


False-color image of the QSO (CFHQSJ2329-0301), the most distant black hole currently known. In addition to the bright central black hole (white), the image shows the surrounding host galaxy (red). The white bar indicates an angle on the sky of 4 arcseconds or 1/900th of a degree. Image: Tomotsugu GOTO, University of Hawaii

Dr. Goto stated, "It is surprising that such a giant galaxy existed when the Universe was only one-sixteenth of its present age, and that it hosted a black hole one billion times more massive than the Sun. The galaxy and black hole must have formed very rapidly in the early Universe."

Knowledge of the host galaxies of supermassive black holes is important in order to understand the long-standing mystery of how galaxies and black holes have evolved together. Until now, studying host galaxies in the distant Universe has been extremely difficult because the blinding bright light from the vicinity of the black hole makes it more difficult to see the already faint light from the host galaxy.

Unlike smaller black holes, which form when a large star dies, the origin of the supermassive black holes remains an unsolved problem. A currently favoured model requires several intermediate black holes to merge. The host galaxy discovered in this work provides a reservoir of such intermediate black holes. After forming, supermassive black holes often continue to grow because their gravity draws in matter from surrounding objects. The energy released in this process accounts for the bright light emitted from the region around the black holes.

To see the supermassive black hole, the team of scientists used new red-sensitive Charge Coupled Devices (CCDs) installed in the Suprime-Cam camera on the Subaru telescope on Mauna Kea. Prof. Satoshi Miyazaki of the National Astronomical Observatory of Japan (NAOJ) is a lead investigator for the creation of the new CCDs and a collaborator on this project. He said, "The improved sensitivity of the new CCDs has brought an exciting discovery as its very first result."

A careful analysis of the data revealed that 40 percent of the near-infrared light observed (at the wavelength of 9100 Angstroms) is from the host galaxy itself and 60 percent is from the surrounding clouds of material (nebulae) illuminated by the black hole.

Yousuke Utsumi (Graduate University for Advanced Studies /NAOJ), a member of the project team, said, "We have witnessed a supermassive black hole and its host galaxy forming together. This discovery has opened a new window for investigating galaxy-black hole co-evolution at the dawn of the Universe."

Dr. Goto is a fellow of the Japan Society for the Promotion of Science (JSPS). He received his PhD from the University of Tokyo in 2003 and has also worked at Carnegie Mellon and Johns Hopkins universities, and at the Institute of Space and Astronautical Science, a part of JAXA, the Japanese equivalent of NASA. He came to UH Institute for Astronomy in 2008 to work with Dr. David Sanders on quasi-stellar objects (QSOs) and luminous infrared galaxies.

Other members of the research team are Dr. Hisanori Furusawa (NAOJ) and Dr. Yutaka Komiyama (NAOJ).

Full bibliographic information
"A QSO Host Galaxy and its Lyman alpha emission at z=6.43", Goto T., Utsumi Y., Furusawa H., Miyazaki S. and Komiyama Y., Monthly Notices of the Royal Astronomical Society, in press.

Robert Massey | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>