Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant Galaxy Hosts the Most Distant Supermassive Black Hole

University of Hawaii (UH) astronomer Dr. Tomotsugu Goto and colleagues have discovered a giant galaxy surrounding the most distant supermassive black hole ever found.

The galaxy, so distant that it is seen as it was 12.8 billion years ago, is as large as the Milky Way galaxy and harbours a supermassive black hole that contains at least a billion times as much matter as our Sun. The scientists set out their results in a paper in the journal Monthly Notices of the Royal Astronomical Society later this month.

False-color image of the QSO (CFHQSJ2329-0301), the most distant black hole currently known. In addition to the bright central black hole (white), the image shows the surrounding host galaxy (red). The white bar indicates an angle on the sky of 4 arcseconds or 1/900th of a degree. Image: Tomotsugu GOTO, University of Hawaii

Dr. Goto stated, "It is surprising that such a giant galaxy existed when the Universe was only one-sixteenth of its present age, and that it hosted a black hole one billion times more massive than the Sun. The galaxy and black hole must have formed very rapidly in the early Universe."

Knowledge of the host galaxies of supermassive black holes is important in order to understand the long-standing mystery of how galaxies and black holes have evolved together. Until now, studying host galaxies in the distant Universe has been extremely difficult because the blinding bright light from the vicinity of the black hole makes it more difficult to see the already faint light from the host galaxy.

Unlike smaller black holes, which form when a large star dies, the origin of the supermassive black holes remains an unsolved problem. A currently favoured model requires several intermediate black holes to merge. The host galaxy discovered in this work provides a reservoir of such intermediate black holes. After forming, supermassive black holes often continue to grow because their gravity draws in matter from surrounding objects. The energy released in this process accounts for the bright light emitted from the region around the black holes.

To see the supermassive black hole, the team of scientists used new red-sensitive Charge Coupled Devices (CCDs) installed in the Suprime-Cam camera on the Subaru telescope on Mauna Kea. Prof. Satoshi Miyazaki of the National Astronomical Observatory of Japan (NAOJ) is a lead investigator for the creation of the new CCDs and a collaborator on this project. He said, "The improved sensitivity of the new CCDs has brought an exciting discovery as its very first result."

A careful analysis of the data revealed that 40 percent of the near-infrared light observed (at the wavelength of 9100 Angstroms) is from the host galaxy itself and 60 percent is from the surrounding clouds of material (nebulae) illuminated by the black hole.

Yousuke Utsumi (Graduate University for Advanced Studies /NAOJ), a member of the project team, said, "We have witnessed a supermassive black hole and its host galaxy forming together. This discovery has opened a new window for investigating galaxy-black hole co-evolution at the dawn of the Universe."

Dr. Goto is a fellow of the Japan Society for the Promotion of Science (JSPS). He received his PhD from the University of Tokyo in 2003 and has also worked at Carnegie Mellon and Johns Hopkins universities, and at the Institute of Space and Astronautical Science, a part of JAXA, the Japanese equivalent of NASA. He came to UH Institute for Astronomy in 2008 to work with Dr. David Sanders on quasi-stellar objects (QSOs) and luminous infrared galaxies.

Other members of the research team are Dr. Hisanori Furusawa (NAOJ) and Dr. Yutaka Komiyama (NAOJ).

Full bibliographic information
"A QSO Host Galaxy and its Lyman alpha emission at z=6.43", Goto T., Utsumi Y., Furusawa H., Miyazaki S. and Komiyama Y., Monthly Notices of the Royal Astronomical Society, in press.

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>