Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant galaxy cluster sets record pace for star creation

16.08.2012
Astronomers have found an extraordinary galaxy cluster — one of the largest objects in the universe — that is breaking several important cosmic records.

The discovery of this cluster, known as the Phoenix Cluster, made with the National Science Foundation's South Pole Telescope, may force astronomers to rethink how these colossal structures, and the galaxies that inhabit them, evolve.


The Phoenix Cluster, shown here as it appears in microwave (orange), optical (red, green, and blue) and ultraviolet (blue) wavelengths, is forming stars at the highest rate ever observed for the middle of a galaxy cluster. The Phoenix Cluster was discovered by a collaboration of astronomers from the University of Chicago’s Kavli Institute for Cosmological Physics and elsewhere.

Credit: South Pole Telescope collaboration


New findings about an extraordinary galaxy cluster discovered by the National Science Foundation’s 10-meter South Pole Telescope, pictured here, and later followed-up by eight other world-class observatories, appear in the Aug. 16 issue of the journal Nature.

Credit: Daniel Luong-Van

Follow-up observations made in ultraviolet, optical and infrared wavelengths show that stars are forming in this object at the highest rate ever seen in the middle of a galaxy cluster. The object also is the most powerful producer of X-rays of any known cluster, and among the most massive of clusters. The data also suggest that the rate of hot gas cooling in the central regions of the cluster is the largest ever observed.

Officially known as SPT-CLJ2344-4243, this galaxy cluster has been dubbed the "Phoenix Cluster" because it is located in the constellation of the Phoenix, and because of its remarkable properties. Scientists at the University of Chicago's Kavli Institute for Cosmological Physics and their collaborators initially found the cluster, located about 5.7 billion light years from Earth, using the Sunyaev-Zel'dovich effect, the shadow that the cluster makes in fossil light leftover from the big bang.

Predicted in 1972, the effect was first demonstrated to find previously unknown clusters of galaxies by the South Pole Telescope collaboration in 2009. Observations of the effect have since opened a new window for astronomers to discover the most massive, distant clusters in the universe.

"The mythology of the Phoenix — a bird rising from the dead — is a perfect way to describe this revived object," said Michael McDonald, a Hubble Fellow at the Massachusetts Institute of Technology's Kavli Institute for Astrophysics and Space Research. McDonald is the lead author of a paper appearing in the Aug. 16 issue of the journal Nature, which presents these findings. "While galaxies at the center of most clusters have been dead for billions of years, the central galaxy in this cluster seems to have come back to life," McDonald said.

Like other galaxy clusters, Phoenix holds a vast reservoir of hot gas that contains more normal matter than all of the galaxies in the cluster combined. The reservoir of hot gas can be detected with X-ray telescopes like NASA's Chandra X-ray Observatory, and the shadow it makes in the light from the big bang can be detected with the South Pole Telescope. The prevailing wisdom had once been that this hot gas should cool over time and sink to the center of the cluster, forming huge numbers of stars.

However, most galaxy clusters have formed very few stars over the last few billion years. Astronomers think that the supermassive black hole in the central galaxy of clusters pumps energy into the system, preventing cooling of gas from causing a burst of star formation. The famous Perseus Cluster is an example of a black hole bellowing out energy and preventing the gas from cooling to form stars at a high rate.

With its black hole not producing powerful enough jets, the center of the Phoenix Cluster is buzzing with stars that are forming 20 times faster than in the Perseus Cluster. This rate is the highest seen in the center of a galaxy cluster and is comparable to the highest seen anywhere in the universe.

The frenetic pace of star birth and cooling of gas in Phoenix are causing both the galaxy and the black hole to add mass very quickly — an important phase that the researchers predict will be relatively short-lived.

"The galaxy and its black hole are undergoing unsustainable growth," said co-author Bradford Benson, a Kavli Institute Fellow at UChicago. "This growth spurt can't last longer than about a hundred million years, otherwise the galaxy and black hole would become much bigger than their counterparts in the nearby universe."

Remarkably, the Phoenix Cluster and its central galaxy and supermassive black hole are already among the most massive known objects of their type. Because of their tremendous size, galaxy clusters are crucial objects for studying cosmology and galaxy evolution and so finding one with such extreme properties like the Phoenix Cluster is important.

"The beauty of the SZ effect for cosmology is that it is as easy to detect a cluster of galaxies in the distant reaches of the observable universe as it is for one nearby," said UChicago's John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics. "The magnitude of the effect depends on the mass of the object and not its distance from Earth."

Galaxy clusters contain enough hot gas to create detectable "shadows" in the light left over from the big bang, which also is known as the cosmic microwave background radiation. This light has literally travelled for 14 billion years across the entire observable universe to get to Earth. If it passes through a massive cluster on its way, then a tiny fraction of the light gets scattered to higher energies — the Sunyaev-Zel'dovich effect.

The South Pole Telescope collaboration has now completed an SZ survey of a large region of the sky finding hundreds of distant, massive galaxy clusters. Further follow-up observations of the clusters at X-ray and other wavelengths may reveal the existence of additional Phoenix-like galaxy clusters.

Also contributing observations of the Phoenix Cluster were the Gemini Observatory and the Blanco 4-meter and Magellan telescopes, all in Chile, while several space-based telescopes were used to measure the cluster's star-formation rate.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>