Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant galaxy cluster sets record pace for star creation

16.08.2012
Astronomers have found an extraordinary galaxy cluster — one of the largest objects in the universe — that is breaking several important cosmic records.

The discovery of this cluster, known as the Phoenix Cluster, made with the National Science Foundation's South Pole Telescope, may force astronomers to rethink how these colossal structures, and the galaxies that inhabit them, evolve.


The Phoenix Cluster, shown here as it appears in microwave (orange), optical (red, green, and blue) and ultraviolet (blue) wavelengths, is forming stars at the highest rate ever observed for the middle of a galaxy cluster. The Phoenix Cluster was discovered by a collaboration of astronomers from the University of Chicago’s Kavli Institute for Cosmological Physics and elsewhere.

Credit: South Pole Telescope collaboration


New findings about an extraordinary galaxy cluster discovered by the National Science Foundation’s 10-meter South Pole Telescope, pictured here, and later followed-up by eight other world-class observatories, appear in the Aug. 16 issue of the journal Nature.

Credit: Daniel Luong-Van

Follow-up observations made in ultraviolet, optical and infrared wavelengths show that stars are forming in this object at the highest rate ever seen in the middle of a galaxy cluster. The object also is the most powerful producer of X-rays of any known cluster, and among the most massive of clusters. The data also suggest that the rate of hot gas cooling in the central regions of the cluster is the largest ever observed.

Officially known as SPT-CLJ2344-4243, this galaxy cluster has been dubbed the "Phoenix Cluster" because it is located in the constellation of the Phoenix, and because of its remarkable properties. Scientists at the University of Chicago's Kavli Institute for Cosmological Physics and their collaborators initially found the cluster, located about 5.7 billion light years from Earth, using the Sunyaev-Zel'dovich effect, the shadow that the cluster makes in fossil light leftover from the big bang.

Predicted in 1972, the effect was first demonstrated to find previously unknown clusters of galaxies by the South Pole Telescope collaboration in 2009. Observations of the effect have since opened a new window for astronomers to discover the most massive, distant clusters in the universe.

"The mythology of the Phoenix — a bird rising from the dead — is a perfect way to describe this revived object," said Michael McDonald, a Hubble Fellow at the Massachusetts Institute of Technology's Kavli Institute for Astrophysics and Space Research. McDonald is the lead author of a paper appearing in the Aug. 16 issue of the journal Nature, which presents these findings. "While galaxies at the center of most clusters have been dead for billions of years, the central galaxy in this cluster seems to have come back to life," McDonald said.

Like other galaxy clusters, Phoenix holds a vast reservoir of hot gas that contains more normal matter than all of the galaxies in the cluster combined. The reservoir of hot gas can be detected with X-ray telescopes like NASA's Chandra X-ray Observatory, and the shadow it makes in the light from the big bang can be detected with the South Pole Telescope. The prevailing wisdom had once been that this hot gas should cool over time and sink to the center of the cluster, forming huge numbers of stars.

However, most galaxy clusters have formed very few stars over the last few billion years. Astronomers think that the supermassive black hole in the central galaxy of clusters pumps energy into the system, preventing cooling of gas from causing a burst of star formation. The famous Perseus Cluster is an example of a black hole bellowing out energy and preventing the gas from cooling to form stars at a high rate.

With its black hole not producing powerful enough jets, the center of the Phoenix Cluster is buzzing with stars that are forming 20 times faster than in the Perseus Cluster. This rate is the highest seen in the center of a galaxy cluster and is comparable to the highest seen anywhere in the universe.

The frenetic pace of star birth and cooling of gas in Phoenix are causing both the galaxy and the black hole to add mass very quickly — an important phase that the researchers predict will be relatively short-lived.

"The galaxy and its black hole are undergoing unsustainable growth," said co-author Bradford Benson, a Kavli Institute Fellow at UChicago. "This growth spurt can't last longer than about a hundred million years, otherwise the galaxy and black hole would become much bigger than their counterparts in the nearby universe."

Remarkably, the Phoenix Cluster and its central galaxy and supermassive black hole are already among the most massive known objects of their type. Because of their tremendous size, galaxy clusters are crucial objects for studying cosmology and galaxy evolution and so finding one with such extreme properties like the Phoenix Cluster is important.

"The beauty of the SZ effect for cosmology is that it is as easy to detect a cluster of galaxies in the distant reaches of the observable universe as it is for one nearby," said UChicago's John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics. "The magnitude of the effect depends on the mass of the object and not its distance from Earth."

Galaxy clusters contain enough hot gas to create detectable "shadows" in the light left over from the big bang, which also is known as the cosmic microwave background radiation. This light has literally travelled for 14 billion years across the entire observable universe to get to Earth. If it passes through a massive cluster on its way, then a tiny fraction of the light gets scattered to higher energies — the Sunyaev-Zel'dovich effect.

The South Pole Telescope collaboration has now completed an SZ survey of a large region of the sky finding hundreds of distant, massive galaxy clusters. Further follow-up observations of the clusters at X-ray and other wavelengths may reveal the existence of additional Phoenix-like galaxy clusters.

Also contributing observations of the Phoenix Cluster were the Gemini Observatory and the Blanco 4-meter and Magellan telescopes, all in Chile, while several space-based telescopes were used to measure the cluster's star-formation rate.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>