Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant eruption reveals 'dead' star

18.06.2009
An enormous eruption has found its way to Earth after travelling for many thousands of years across space. Studying this blast with ESA’s XMM-Newton and Integral space observatories, astronomers have discovered a dead star belonging to a rare group: the magnetars.

X-Rays from the giant outburst arrived on Earth on 22 August 2008, and triggered an automatic sensor on the NASA-led, international Swift satellite. Just twelve hours later, XMM-Newton zeroed in and began to collect the radiation, allowing the most detailed spectral study of the decay of a magnetar outburst.

The outburst lasted for more than four months, during which time hundreds of smaller bursts were measured. Nanda Rea from the University of Amsterdam led the team that performed the research. “Magnetars allow us to study extreme matter conditions that cannot be reproduced on Earth,” she says.

Magnetars are the most intensely magnetised objects in the Universe. Their magnetic fields are some 10 000 million times stronger than Earth’s. If a magnetar were to magically appear at half the Moon’s distance from Earth, its magnetic field would wipe the details off every credit card on Earth.
This particular magnetar, known as SGR 0501+4516, is estimated to lie about 15 000 light-years away, and was undiscovered until its outburst gave it away. An outburst takes place when the unstable configuration of the magnetic field pulls the magnetar’s crust, allowing matter to spew outwards in an exotic volcanic eruption. This matter tangles with the magnetic field which itself can change its configuration, releasing more energy. And this was where Integral came in.

Only five days after the big eruption, Integral detected highly energetic X-rays coming from the outburst, beyond the energy range that XMM-Newton can see. It is the first time such transient X-ray emission has been detected during the outburst. It disappeared within 10 days and was probably generated as the magnetic configuration changed.
Magnetar outbursts can supply as much energy to Earth as solar flares, despite the fact they are far across our Galaxy, whereas the Sun is at our celestial doorstep. There are two ideas as to how a magnetar forms. One is that it is the tiny core left behind after a highly magnetic star has died. But such magnetic stars are very rare, with just a few known in our Galaxy. Another suggestion is that during the death of a normal star, its tiny core is accelerated, providing a dynamo that strengthens its magnetic field, turning it into a magnetar.

Currently most astronomers favour the first idea but as yet they have no conclusive proof. “If we could just find a magnetar in a cluster of highly magnetic stars, that would prove it,” says Rea.
So far only 15 magnetars in total are known in our Galaxy. SGR 0501+4516 is the first new soft gamma repeater, one of the two types of magnetars, discovered after a decade of searches. So, astronomers continue to search for more, waiting for the next giant eruption. As for their newly discovered SGR 0501+4516, the team has been granted time to return and observe it again next year with XMM-Newton. Now they know where to look, they hope to detect the object in a quiescent state, rather than in outburst, so that they can study the calm after a big storm.

The first outburst of the new magnetar candidate SGR 0501+4516 by N. Rea, G.L. Israel, R. Turolla, P. Esposito, S. Mereghetti, D. Gotz, S. Zane, A. Tiengo, K. Hurley, M. Feroci, M. Still, V. Yershov, C. Winkler, R. Perna, F. Bernardini, P. Ubertini, L. Stella, S. Campana, M. van der Klis, P.M. Woods, was published yesterday in the online version of the Monthly Notices of the Royal Astronomical Society.

Norbert Schartel | EurekAlert!
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>