Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant black hole kicked out of home galaxy

05.06.2012
Astronomers have found strong evidence that a massive black hole is being ejected from its host galaxy at a speed of several million miles per hour. New observations from NASA's Chandra X-ray Observatory suggest that the black hole collided and merged with another black hole and received a powerful recoil kick from gravitational wave radiation.

"It's hard to believe that a supermassive black hole weighing millions of times the mass of the sun could be moved at all, let alone kicked out of a galaxy at enormous speed," said Francesca Civano of the Harvard-Smithsonian Center for Astrophysics (CfA), who led the new study.


Chandra and other telescopes have shown that the galaxy CID-42 likely contains a massive black hole being ejected at several million miles per hour. The main panel is a wide-field optical image of CID-42 and the area around it. The outlined box represents the more localized view of CID-42 that is shown in the three separate boxes on the right-hand side of the graphic. An image from Chandra (top box) shows that the X-ray emission is concentrated in a single source, corresponding to one of the two sources seen in deep observations by Hubble (middle box). The precise Chandra data helps astronomers narrow their ideas about what is happening in this galaxy, supporting the ejected black hole theory. Credit: X-ray: NASA/CXC/SAO/F.Civano et al; Optical: NASA/STScI; Optical (wide field): CFHT, NASA/STScI

"But these new data support the idea that gravitational waves -- ripples in the fabric of space first predicted by Albert Einstein but never detected directly -- can exert an extremely powerful force."

Although the ejection of a supermassive black hole from a galaxy by recoil because more gravitational waves are being emitted in one direction than another is likely to be rare, it nevertheless could mean that there are many giant black holes roaming undetected out in the vast spaces between galaxies.

"These black holes would be invisible to us," said co-author Laura Blecha, also of CfA, "because they have consumed all of the gas surrounding them after being thrown out of their home galaxy."

Civano and her group have been studying a system known as CID-42, located in the middle of a galaxy about 4 billion light years away. They had previously spotted two distinct, compact sources of optical light in CID-42, using NASA's Hubble Space Telescope.

More optical data from the ground-based Magellan and Very Large Telescopes in Chile supplied a spectrum (that is, the distribution of optical light with energy) that suggested the two sources in CID-42 are moving apart at a speed of at least 3 million miles per hour.

Previous Chandra observations detected a bright X-ray source likely caused by super-heated material around one or more supermassive black holes. However, they could not distinguish whether the X-rays came from one or both of the optical sources because Chandra was not pointed directly at CID-42, giving an X-ray source that was less sharp than usual.

"The previous data told us that there was something special going on, but we couldn't tell if there were two black holes or just one," said another co-author Martin Elvis, also of CfA. "We needed new X-ray data to separate the sources."

When Chandra's sharp High Resolution Camera was pointed directly at CID-42, the resulting data showed that X-rays were coming only from one of the sources. The team thinks that when two galaxies collided, the supermassive black holes in the center of each galaxy also collided. The two black holes then merged to form a single black hole that recoiled from gravitational waves produced by the collision, which gave the newly merged black hole a sufficiently large kick for it to eventually escape from the galaxy. The other optical source is thought to be the bright star cluster that was left behind. This picture is consistent with recent computer simulations of merging black holes, which show that merged black holes can receive powerful kicks from the emission of gravitational waves.

There are two other possible explanations for what is happening in CID-42. One would involve an encounter between three supermassive black holes, resulting in the lightest one being ejected. Another idea is that CID-42 contains two supermassive black holes spiraling toward one another, rather than one moving quickly away.

Both of these alternate explanations would require at least one of the supermassive black holes to be very obscured, since only one bright X-ray source is observed. Thus the Chandra data support the idea of a black hole recoiling because of gravitational waves.

The source is located in the Cosmic Evolution Survey (COSMOS) field, a large, multi-wavelength survey.

The other co-authors are Giorgio Lanzuisi (CfA), Thomas Aldcroft (CfA), Markos Trichas (CfA), Angela Bongiorno (Max-Planck Institute for Astrophysics (MPIA), Garching, Germany), Marcella Brusa (MPIA), Andrea Comastri (National Institute for Astrophysics (INAF), Bologna, Italy), Avi Loeb (CfA), Mara Salvato (MPIA), Antonella Fruscione (CfA), Anton Koekemoer (Space Telescope Science Institute, Baltimore, MD), Stefanie Komossa (Max-Planck Institute for Plasma Physics, Garching, Germany), Roberto Gilli (INAF, Bologna, Italy), Vincenzo Mainieri (XMM-Newton Science Operations Centre, ESA, Madrid, Spain), Enrico Piconcelli (University of Bologna, Bologna, Italy), and Cristian Vignali (Max-Planck Institute for Radio Astronomy, Bonn, Germany).

These results will appear in the June 10 issue of The Astrophysical Journal.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu/

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>