Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant black hole kicked out of home galaxy

05.06.2012
Astronomers have found strong evidence that a massive black hole is being ejected from its host galaxy at a speed of several million miles per hour. New observations from NASA's Chandra X-ray Observatory suggest that the black hole collided and merged with another black hole and received a powerful recoil kick from gravitational wave radiation.

"It's hard to believe that a supermassive black hole weighing millions of times the mass of the sun could be moved at all, let alone kicked out of a galaxy at enormous speed," said Francesca Civano of the Harvard-Smithsonian Center for Astrophysics (CfA), who led the new study.


Chandra and other telescopes have shown that the galaxy CID-42 likely contains a massive black hole being ejected at several million miles per hour. The main panel is a wide-field optical image of CID-42 and the area around it. The outlined box represents the more localized view of CID-42 that is shown in the three separate boxes on the right-hand side of the graphic. An image from Chandra (top box) shows that the X-ray emission is concentrated in a single source, corresponding to one of the two sources seen in deep observations by Hubble (middle box). The precise Chandra data helps astronomers narrow their ideas about what is happening in this galaxy, supporting the ejected black hole theory. Credit: X-ray: NASA/CXC/SAO/F.Civano et al; Optical: NASA/STScI; Optical (wide field): CFHT, NASA/STScI

"But these new data support the idea that gravitational waves -- ripples in the fabric of space first predicted by Albert Einstein but never detected directly -- can exert an extremely powerful force."

Although the ejection of a supermassive black hole from a galaxy by recoil because more gravitational waves are being emitted in one direction than another is likely to be rare, it nevertheless could mean that there are many giant black holes roaming undetected out in the vast spaces between galaxies.

"These black holes would be invisible to us," said co-author Laura Blecha, also of CfA, "because they have consumed all of the gas surrounding them after being thrown out of their home galaxy."

Civano and her group have been studying a system known as CID-42, located in the middle of a galaxy about 4 billion light years away. They had previously spotted two distinct, compact sources of optical light in CID-42, using NASA's Hubble Space Telescope.

More optical data from the ground-based Magellan and Very Large Telescopes in Chile supplied a spectrum (that is, the distribution of optical light with energy) that suggested the two sources in CID-42 are moving apart at a speed of at least 3 million miles per hour.

Previous Chandra observations detected a bright X-ray source likely caused by super-heated material around one or more supermassive black holes. However, they could not distinguish whether the X-rays came from one or both of the optical sources because Chandra was not pointed directly at CID-42, giving an X-ray source that was less sharp than usual.

"The previous data told us that there was something special going on, but we couldn't tell if there were two black holes or just one," said another co-author Martin Elvis, also of CfA. "We needed new X-ray data to separate the sources."

When Chandra's sharp High Resolution Camera was pointed directly at CID-42, the resulting data showed that X-rays were coming only from one of the sources. The team thinks that when two galaxies collided, the supermassive black holes in the center of each galaxy also collided. The two black holes then merged to form a single black hole that recoiled from gravitational waves produced by the collision, which gave the newly merged black hole a sufficiently large kick for it to eventually escape from the galaxy. The other optical source is thought to be the bright star cluster that was left behind. This picture is consistent with recent computer simulations of merging black holes, which show that merged black holes can receive powerful kicks from the emission of gravitational waves.

There are two other possible explanations for what is happening in CID-42. One would involve an encounter between three supermassive black holes, resulting in the lightest one being ejected. Another idea is that CID-42 contains two supermassive black holes spiraling toward one another, rather than one moving quickly away.

Both of these alternate explanations would require at least one of the supermassive black holes to be very obscured, since only one bright X-ray source is observed. Thus the Chandra data support the idea of a black hole recoiling because of gravitational waves.

The source is located in the Cosmic Evolution Survey (COSMOS) field, a large, multi-wavelength survey.

The other co-authors are Giorgio Lanzuisi (CfA), Thomas Aldcroft (CfA), Markos Trichas (CfA), Angela Bongiorno (Max-Planck Institute for Astrophysics (MPIA), Garching, Germany), Marcella Brusa (MPIA), Andrea Comastri (National Institute for Astrophysics (INAF), Bologna, Italy), Avi Loeb (CfA), Mara Salvato (MPIA), Antonella Fruscione (CfA), Anton Koekemoer (Space Telescope Science Institute, Baltimore, MD), Stefanie Komossa (Max-Planck Institute for Plasma Physics, Garching, Germany), Roberto Gilli (INAF, Bologna, Italy), Vincenzo Mainieri (XMM-Newton Science Operations Centre, ESA, Madrid, Spain), Enrico Piconcelli (University of Bologna, Bologna, Italy), and Cristian Vignali (Max-Planck Institute for Radio Astronomy, Bonn, Germany).

These results will appear in the June 10 issue of The Astrophysical Journal.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu/

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>