Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Balloon Flying High Over Atlantic to Catch Cosmic Rays

25.05.2009
University of Delaware researchers in Sweden have launched a giant balloon taller than a football field that is now flying at the edge of space to collect data on cosmic rays -- the most super-charged particles in the universe. You can follow the flight's path online.

The balloon, which is 396 feet tall and 459 feet in diameter when fully inflated, was set aloft at 4:34 a.m. on May 17 from Esrange Space Center near Kiruna, Sweden, in the Arctic Circle. It is flying at a speed of more than 40 knots and an altitude of nearly 27 miles. Its payload of cosmic ray detectors, housed in a pressurized shell, will be cut free in northwestern Canada and float back down to Earth on a parachute, and then secured and recovered, likely by helicopter.

Cosmic rays are extraterrestrial high-energy electrons, protons, and heavier nuclei that enter our atmosphere.

“The bulk of cosmic rays are likely produced by strong shock waves from Supernova explosions within our galaxy,” said John Clem, research associate professor of physics and astronomy at the University of Delaware's Bartol Research Institute. “It is well documented that these high-energy particles can threaten the health of astronauts in space and expose airline workers to radiation,” Clem noted.

With support from a $961,710 grant from NASA, Clem is leading a research team from UD and NASA's Columbia Scientific Balloon Facility in Palestine, Texas, to learn more about cosmic rays. The effort entails launching two helium-filled high-altitude balloons -- one to carry the “Low Energy Electrons” (LEE) instrument payload, which is now afloat, and one to carry the “Anti-Electron Sub-Orbital Payload” (AESOP), which will be in flight on May 23 and travel to the upper limits of the atmosphere.

Clem says about a thousand cosmic rays strike every square meter of Earth's atmosphere each second, depending somewhat on the location. The data from the balloon flights will be used to study solar modulation, the variation in cosmic ray intensity that is correlated with solar activity.

AESOP can detect electrons with energies up to about 10 gigaelectron volts, according to Clem. The instrument utilizes a system of different radiation detectors and a magnetic spectrometer to identify the particle's electric charge, energy, and mass. The major component in the magnetic spectrometer is the spark chamber.

AESOP's chambers contain five parallel aluminum plates connected, in alternate order, to ground and a high-voltage pulser. The medium between the plates is a slow-moving mixture of neon and helium. As a charged particle passes through a chamber, it leaves behind an ion trail in the gas. In the presence of a high electric field, the ions in the gas are accelerated toward the plate surface, resulting in a bright red vertical spark, which is digitized and recorded by a linear charge-coupled device (CCD) camera.

According to Clem, the level of solar activity rises and falls over a period of approximately 11 years and influences cosmic ray intensity. As solar activity rises, cosmic ray activity decreases. Currently, solar activity is low, and we are in a period of high cosmic ray intensity, Clem said.

“We're working to better understand how the sun's changing magnetic field affects cosmic ray propagation through the solar system,” Clem noted.

Clem's research team in Sweden includes senior electronics instrumentation specialists James Roth and Chris Elliott, who will be joined next week by Paul Evenson, professor and director of UD's Center for the Study of Space Radiation Effects, and Jessica Sun, who is working on her bachelor's degree in engineering at UD.

In 2002, the University of Delaware's LEE cosmic ray detector rode aboard the largest high-altitude balloon ever flown. The 60 million cubic foot balloon, fabricated by NASA's Columbia Scientific Balloon Facility, flew at a height of 161,000 feet from Lynn Lake in Manitoba, Canada.

See http://www.udel.edu/udaily/2009/may/balloon052109.html for images.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>