Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Germanium made compatible

22.04.2013
Good news for the computer industry: a team of researchers has managed to make germanium suitable for lasers. This could enable microprocessor components to communicate using light in future, which will make the computers of the future faster and more efficient.

Researchers from ETH Zurich, the Paul Scherrer Institute (PSI) and the Politecnico di Milano have jointly developed a manufacturing technique to render the semiconductor germanium laser-compatible through high tensile strain. In their paper recently published in Nature Photonics, they reveal how they can generate the necessary tensile strain efficiently.


Light emitting bridges of germanium can be used for communication between microprocessors. (Graphic: Hans Sigg, PSI)

The scientists demonstrate that they can use their method to effectively alter the optical properties of germanium, which is unsuitable for lasers as such: “With a strain of three per cent, the material emits around twenty-five times more photons than in a relaxed state,” explains Martin Süess, a doctoral student at the Laboratory for Nanometallurgy headed by Ralph Spolenak and the EMEZ at ETH Zurich. “That’s enough to build lasers with,” adds his colleague Richard Geiger, a doctoral student at the Laboratory for Micro- and Nanotechnology at the PSI and the Institute for Quantum Electronics at ETH Zurich under Jérôme Faist.

High tension through microbridges

In order to bring the germanium into a laser-compatible, stretched form with the new method, the researchers use the slight tension generated in germanium when it evaporates on silicon, strengthening this prestrain with so-called microbridges: they score exposed germanium strips, which remain attached to the silicon layer at both ends, in the middle on both sides. The two halves of the strip thus remain connected solely by an extremely narrow bridge, which is precisely where, for physical reasons, the strain of the germanium grows so intense that it becomes laser-compatible.

“The tensile strain exerted on the germanium is comparable to the force exerted on a pencil as two lorries pull upon it in opposite directions,” says Hans Sigg, the project manager at the PSI, explaining the feat on a micrometre scale in everyday proportions. The material properties change because the individual atoms move apart a little through the expansion of the material, which enables the electrons to reach energy levels that are favourable for the generation of light particles, so-called photons.

Germanium laser for the computer of the future

The interdisciplinary research team’s method could increase the performance of future computer generations considerably. After all, in order to improve computer performance, computer chips have constantly been made smaller and more densely packed. However, this approach will eventually hit a brick wall in the foreseeable future. “In order to increase performance and speed further, the individual components need to be linked more closely and communicate with each other more efficiently,” explains Süess. This requires new transmission paths that are faster than today, where the signals are still transmitted via electricity and copper cables.

“The way to go in future is light,” says Geiger. In order to be able to use this to transfer data, however, first of all light sources are needed that are so small as to fit onto a chip and react well to silicon, the base material of all computer chips. Silicon itself is not suitable for the construction of laser light, which is also the reason why it is so important for the researchers to make germanium laser-compatible: “Germanium is perfectly compatible with silicon and already used in the computer industry in the production of silicon chips,” explains Geiger. If it is possible to build tiny lasers out of germanium using the new method, a system change is within reach. “We’re on the right track,” says Süess. The international team of researchers is currently in the process of actually constructing a germanium laser with the new method.

Further reading

Süess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J & Sigg H: Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photonics. 2013. Published online: 14 April 2013 doi:10.1038/nphoton.2013.67.

Martin Sueess | EurekAlert!
Further information:
http://www.ethz.ch

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>