Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German astronomers finish Europe’s largest solar telescope on Tenerife

15.05.2012
After ten years of development, the new German solar telescope GREGOR will start operating at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias on Tenerife. It is the largest solar telescope in Europe and number three worldwide.

It will provide the German and the international community of solar physicists with new and better instrumentation which will enable them to investigate our home star in unprecedented detail.


GREGOR telescope
Credits: AIP


GREGOR telescope building
Credits: KIS

Studying the Sun is a key to understand the physical processes on and in the majority of stars. Moreover, there is also a very practical aspect: the solar activity affects or even damages satellite systems and power networks in some regions on Earth. Knowing more about it may help to mitigate expensive damages.

The inauguration ceremony will take place on May 21, 2012 on Tenerife.

GREGOR is a solar telescope with an aperture of 1.5 meters and has been designed to carry out observations of the solar photosphere and chromosphere in the visible and infrared part of the spectrum. Due to its large diameter it will allow observations with higher resolution than was possible before. A novel “adaptive optics system” is able to compensate for atmospheric disturbances and provides a detailed image of the Sun, similar to what would be achieved if the telescope was in space. The resulting high spatial, spectral, and temporal resolution will allow scientists to follow physical processes on the Sun on spatial scales as small as 70 km.

During night time GREGOR can also observe bright stars. It will mainly be used for long term monitoring of stars in order to find out whether the distant suns show similar cyclic behaviour as our own.

GREGOR’s design is completely open in order to enable wind cooling of the telescope structure and the mirrors. The classical dome has therefore been replaced by a retractable structure which allows natural air flushing. This open structure places high demands on the mechanical stability of the telescope structure in order to eliminate wind-induced vibrations.

The primary mirror is a lightweight filigree structure made of a special material that does not deform under the heat of the bright Sun. Additionally, the mirror is actively cooled from the back in order to prevent the front side from heating up and thus producing internal turbulence.

From the telescope the light is guided into the laboratory rooms where it can be distributed to a number of analyzing instruments:

- An imaging setup produces images of the solar surface at various wavelengths. These images are expected to show an extraordinary richness of details.

- Studying the photosphere and chromosphere of the Sun, analyzing the interaction of the solar magnetic field and the highly dynamic plasma, will be possible thanks to the interferometric setup.

- A spectrograph will analyze the solar atmosphere by looking into the near infrared part of the spectrum. It will be able to produce detailed maps of the solar magnetic field.

GREGOR will be accessible to the international solar physics community and has the potential to provide a significant boost to solar physics worldwide.

The GREGOR solar telescope has been built by a German consortium under the leadership of the Kiepenheuer-Institut für Sonnenphysik in Freiburg with the Leibniz-Institut für Astrophysik Potsdam and the Max-Planck-Institut für Sonnensystemforschung in Katlenburg/Lindau as partners, and with contributions by the Instituto de Astrofísica de Canarias, the Institut für Astrophysik Göttingen, and the Astronomical Institute of the Academy of Sciences of the Czech Republic.

Science contact:
Freiburg/KIS: Dr. Reiner Hammer. Tel.: +49-761-3198-216,
E-mail: hammer@kis.uni-freiburg.de
Potsdam/AIP: apl. Prof. Dr. Carsten Denker, Tel.: +49-331-7499-297,
E-mail: cdenker@aip.de
Katlenburg-Lindau/MPS: Prof. Dr. Sami K. Solanki
Press contact:
Potsdam/AIP: Dr. Gabriele Schönherr/ Kerstin Mork, Tel.: +49-331-7499-469,
E-mail: presse@aip.de
Katlenburg-Lindau/MPS: Birgit Krummheuer (presseinfo@mps.mpg.de),
Tel.: +49-5556-979-462
Images of the inaugration (by May 21)
http://www.kis.uni-freiburg.de/index.php?id=788&L=0
Weitere Informationen:
http://gregor.kis.uni-freiburg.de/ GREGOR Telescope
http://www.kis.uni-freiburg.de Kiepenheuer-Institut für Sonnenphysik Freiburg
http://www.aip.de Leibniz Institute for Astrophysics Potsdam (AIP)
http://www.mps.mpg.de/de/aktuelles/ Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau (MPS)
http://www.iac.es/eno.php?op1=3&lang=en Observatorio del Teide
http://www.kis.uni-freiburg.de/index.php?id=168 Telescope images

Gabriele Schönherr | idw
Further information:
http://www.aip.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>