Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German astronomers finish Europe’s largest solar telescope on Tenerife

15.05.2012
After ten years of development, the new German solar telescope GREGOR will start operating at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias on Tenerife. It is the largest solar telescope in Europe and number three worldwide.

It will provide the German and the international community of solar physicists with new and better instrumentation which will enable them to investigate our home star in unprecedented detail.


GREGOR telescope
Credits: AIP


GREGOR telescope building
Credits: KIS

Studying the Sun is a key to understand the physical processes on and in the majority of stars. Moreover, there is also a very practical aspect: the solar activity affects or even damages satellite systems and power networks in some regions on Earth. Knowing more about it may help to mitigate expensive damages.

The inauguration ceremony will take place on May 21, 2012 on Tenerife.

GREGOR is a solar telescope with an aperture of 1.5 meters and has been designed to carry out observations of the solar photosphere and chromosphere in the visible and infrared part of the spectrum. Due to its large diameter it will allow observations with higher resolution than was possible before. A novel “adaptive optics system” is able to compensate for atmospheric disturbances and provides a detailed image of the Sun, similar to what would be achieved if the telescope was in space. The resulting high spatial, spectral, and temporal resolution will allow scientists to follow physical processes on the Sun on spatial scales as small as 70 km.

During night time GREGOR can also observe bright stars. It will mainly be used for long term monitoring of stars in order to find out whether the distant suns show similar cyclic behaviour as our own.

GREGOR’s design is completely open in order to enable wind cooling of the telescope structure and the mirrors. The classical dome has therefore been replaced by a retractable structure which allows natural air flushing. This open structure places high demands on the mechanical stability of the telescope structure in order to eliminate wind-induced vibrations.

The primary mirror is a lightweight filigree structure made of a special material that does not deform under the heat of the bright Sun. Additionally, the mirror is actively cooled from the back in order to prevent the front side from heating up and thus producing internal turbulence.

From the telescope the light is guided into the laboratory rooms where it can be distributed to a number of analyzing instruments:

- An imaging setup produces images of the solar surface at various wavelengths. These images are expected to show an extraordinary richness of details.

- Studying the photosphere and chromosphere of the Sun, analyzing the interaction of the solar magnetic field and the highly dynamic plasma, will be possible thanks to the interferometric setup.

- A spectrograph will analyze the solar atmosphere by looking into the near infrared part of the spectrum. It will be able to produce detailed maps of the solar magnetic field.

GREGOR will be accessible to the international solar physics community and has the potential to provide a significant boost to solar physics worldwide.

The GREGOR solar telescope has been built by a German consortium under the leadership of the Kiepenheuer-Institut für Sonnenphysik in Freiburg with the Leibniz-Institut für Astrophysik Potsdam and the Max-Planck-Institut für Sonnensystemforschung in Katlenburg/Lindau as partners, and with contributions by the Instituto de Astrofísica de Canarias, the Institut für Astrophysik Göttingen, and the Astronomical Institute of the Academy of Sciences of the Czech Republic.

Science contact:
Freiburg/KIS: Dr. Reiner Hammer. Tel.: +49-761-3198-216,
E-mail: hammer@kis.uni-freiburg.de
Potsdam/AIP: apl. Prof. Dr. Carsten Denker, Tel.: +49-331-7499-297,
E-mail: cdenker@aip.de
Katlenburg-Lindau/MPS: Prof. Dr. Sami K. Solanki
Press contact:
Potsdam/AIP: Dr. Gabriele Schönherr/ Kerstin Mork, Tel.: +49-331-7499-469,
E-mail: presse@aip.de
Katlenburg-Lindau/MPS: Birgit Krummheuer (presseinfo@mps.mpg.de),
Tel.: +49-5556-979-462
Images of the inaugration (by May 21)
http://www.kis.uni-freiburg.de/index.php?id=788&L=0
Weitere Informationen:
http://gregor.kis.uni-freiburg.de/ GREGOR Telescope
http://www.kis.uni-freiburg.de Kiepenheuer-Institut für Sonnenphysik Freiburg
http://www.aip.de Leibniz Institute for Astrophysics Potsdam (AIP)
http://www.mps.mpg.de/de/aktuelles/ Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau (MPS)
http://www.iac.es/eno.php?op1=3&lang=en Observatorio del Teide
http://www.kis.uni-freiburg.de/index.php?id=168 Telescope images

Gabriele Schönherr | idw
Further information:
http://www.aip.de

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>