Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German astronomers finish Europe’s largest solar telescope on Tenerife

15.05.2012
After ten years of development, the new German solar telescope GREGOR will start operating at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias on Tenerife. It is the largest solar telescope in Europe and number three worldwide.

It will provide the German and the international community of solar physicists with new and better instrumentation which will enable them to investigate our home star in unprecedented detail.


GREGOR telescope
Credits: AIP


GREGOR telescope building
Credits: KIS

Studying the Sun is a key to understand the physical processes on and in the majority of stars. Moreover, there is also a very practical aspect: the solar activity affects or even damages satellite systems and power networks in some regions on Earth. Knowing more about it may help to mitigate expensive damages.

The inauguration ceremony will take place on May 21, 2012 on Tenerife.

GREGOR is a solar telescope with an aperture of 1.5 meters and has been designed to carry out observations of the solar photosphere and chromosphere in the visible and infrared part of the spectrum. Due to its large diameter it will allow observations with higher resolution than was possible before. A novel “adaptive optics system” is able to compensate for atmospheric disturbances and provides a detailed image of the Sun, similar to what would be achieved if the telescope was in space. The resulting high spatial, spectral, and temporal resolution will allow scientists to follow physical processes on the Sun on spatial scales as small as 70 km.

During night time GREGOR can also observe bright stars. It will mainly be used for long term monitoring of stars in order to find out whether the distant suns show similar cyclic behaviour as our own.

GREGOR’s design is completely open in order to enable wind cooling of the telescope structure and the mirrors. The classical dome has therefore been replaced by a retractable structure which allows natural air flushing. This open structure places high demands on the mechanical stability of the telescope structure in order to eliminate wind-induced vibrations.

The primary mirror is a lightweight filigree structure made of a special material that does not deform under the heat of the bright Sun. Additionally, the mirror is actively cooled from the back in order to prevent the front side from heating up and thus producing internal turbulence.

From the telescope the light is guided into the laboratory rooms where it can be distributed to a number of analyzing instruments:

- An imaging setup produces images of the solar surface at various wavelengths. These images are expected to show an extraordinary richness of details.

- Studying the photosphere and chromosphere of the Sun, analyzing the interaction of the solar magnetic field and the highly dynamic plasma, will be possible thanks to the interferometric setup.

- A spectrograph will analyze the solar atmosphere by looking into the near infrared part of the spectrum. It will be able to produce detailed maps of the solar magnetic field.

GREGOR will be accessible to the international solar physics community and has the potential to provide a significant boost to solar physics worldwide.

The GREGOR solar telescope has been built by a German consortium under the leadership of the Kiepenheuer-Institut für Sonnenphysik in Freiburg with the Leibniz-Institut für Astrophysik Potsdam and the Max-Planck-Institut für Sonnensystemforschung in Katlenburg/Lindau as partners, and with contributions by the Instituto de Astrofísica de Canarias, the Institut für Astrophysik Göttingen, and the Astronomical Institute of the Academy of Sciences of the Czech Republic.

Science contact:
Freiburg/KIS: Dr. Reiner Hammer. Tel.: +49-761-3198-216,
E-mail: hammer@kis.uni-freiburg.de
Potsdam/AIP: apl. Prof. Dr. Carsten Denker, Tel.: +49-331-7499-297,
E-mail: cdenker@aip.de
Katlenburg-Lindau/MPS: Prof. Dr. Sami K. Solanki
Press contact:
Potsdam/AIP: Dr. Gabriele Schönherr/ Kerstin Mork, Tel.: +49-331-7499-469,
E-mail: presse@aip.de
Katlenburg-Lindau/MPS: Birgit Krummheuer (presseinfo@mps.mpg.de),
Tel.: +49-5556-979-462
Images of the inaugration (by May 21)
http://www.kis.uni-freiburg.de/index.php?id=788&L=0
Weitere Informationen:
http://gregor.kis.uni-freiburg.de/ GREGOR Telescope
http://www.kis.uni-freiburg.de Kiepenheuer-Institut für Sonnenphysik Freiburg
http://www.aip.de Leibniz Institute for Astrophysics Potsdam (AIP)
http://www.mps.mpg.de/de/aktuelles/ Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau (MPS)
http://www.iac.es/eno.php?op1=3&lang=en Observatorio del Teide
http://www.kis.uni-freiburg.de/index.php?id=168 Telescope images

Gabriele Schönherr | idw
Further information:
http://www.aip.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>