Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geometry Affects Drift and Diffusion Across Entropic Barriers

18.06.2010
An understanding of particle diffusion in the presence of constrictions is essential in fields as diverse as drug delivery, cellular biology, nanotechnology, materials engineering, and spread of pollutants in the soil. When a driving force is applied, displacement of particles occurs as well as diffusion. A paper in The Journal of Chemical Physics, which is published by the American Institute of Physics (AIP), quantifies the effects of periodic constrictions on drift and diffusion in systems experiencing a driving force.

In a uniform cylinder, both the mobility and the diffusion coefficient of the particle are independent of the driving force. This is not true, however, when the cylinder diameter varies. Constrictions provide periodic entropic barriers, which slow down drift and diffusion when the driving force is weak. This research examined two types of cylinders.

In the first, a tube consisted of sequential spherical compartments connected by small circular openings. The driving force suppressed the slowdown due to the constrictions. The particle subjected to a strong driving force showed no change in effective diffusion coefficient or mobility as a result of the periodic restrictions. In a tube of cylindrical chambers, however, the results were dramatically different. Under a strong driving force, mobility decreased while the diffusion coefficient became extremely large due to intermittency that occurred in the particle transitions between openings connecting neighboring compartments.

While author Alexander Berezhkovskii of the National Institutes of Health acknowledges that the original idea for the project was inspired by devices that deliver drugs locally in small amounts, he looks at the research as a quest for a broader understanding. “Nature is very complicated because of geometry, but we are looking for something simple that underlies the complexity,” he says.

... more about:
»AIP »Affects »Chemical »Diffusion »Entropic »Physic »geometry

The article, "Drift and diffusion in a tube of periodically varying diameter. Driving force induced intermittency" by Alexander Berezhkovskii et al will appear in the Journal of Chemical Physics. See: http://jcp.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT THE JOURNAL OF CHEMICAL PHYSICS
The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Affects Chemical Diffusion Entropic Physic geometry

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>