Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Analysis Reveals Principles of Phenotypic Expression

23.06.2010
The Human Genome Project, along with numerous parallel efforts to solve the DNA sequences of hundreds of animal, plant, fungal, and microbe genomes in the last few decades, has produced enormous amounts of genetic data with which researchers are struggling to keep pace.

Knowing gene sequences, after all, may not directly reveal what roles that genes play in the actual manifestation of physical traits (or phenotypes) of an organism -- including their roles in human diseases. To help navigate the new genomic landscape, researchers are developing experimental approaches and analysis tools to help prioritize and organize complex genetic information with respect to phenotypic effects.

In the journal Chaos, which is published by the American Institute of Physics (AIP), scientists at the University of Alabama at Birmingham report powerful new techniques for studying the phenotypes related to genetic differences in the budding yeast, Saccharomyces cerevisiae. The researchers took yeast cultures from an extensive library of approximately 5,000 mutated strains and subjected them to hydroxyurea -- an anti-cancer drug with known effects on the cell cycle.

Using a method called quantitative high-throughput cellular phenotyping (Q-HTCP), the researchers analyzed growth curves for tens of thousands of individual cultures, "focused on finding all of the genes that modulate the cellular effects of the drug," says study co-author John Hartman, an assistant professor of genetics. The researchers then selected the 300 "most 'hydroxyurea-interactive' genes" and further classified the genes by testing their influence on cell growth after treatment with drugs acting by different mechanisms. To integrate the results from such experiments, the researchers developed a new data mining approach called Recursive Expectation-Maximization Clustering (REMc). The approach, Hartman says, "has advantages over prior methods with respect to defining cluster number and quantifying cluster quality," which augments biological discovery.

The technique, Hartman adds, "offers a new way for trying to understand how genetic variation -- such as that related to human disease -- is alternatively buffered or expressed." Understanding phenotypic expression at a systems level, he says, would help create a new field of medicine, dubbed "phenomics."

The article, "Recursive Expectation-Maximization clustering (REMc): A method for identifying buffering mechanisms composed of phenomic modules" by Jingyu Guo et al will appear in Chaos: An Interdisciplinary Journal of Nonlinear Science. See: http://chaos.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT CHAOS
Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See: http://chaos.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Analysis Expectation-Maximization Expression Genetic clues Phenotypic Physic REMC Recursive

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>