Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Generation Nano-CT System Will Enhance Nano-scale Research

03.09.2009
Ge Wang produced the first paper on spiral cone-beam computed tomography (CT), now an imaging technique used in the mainstream of the medical CT field.

Today, Wang, known as a pioneer in this field, and his colleagues have been awarded more than $1.3 million from the National Science Foundation (NSF) to develop the next-generation nano-CT imaging system, which promises to greatly reduce the required dose of radiation. Virginia Tech and Xradia, a leading nano-CT company, are also collaborating on the project with a cost-sharing investment of close to $800,000.

CT is an imaging method that shows objects by sections or sectioning, through the use of x-ray waves and computer processing.

“X-ray nano-CT is a cutting edge imaging tool,” Wang said, “but a long-standing barrier to realizing its full potential is its inability to precisely reconstruct an interior region of interest within a larger object from purely local projections.”

Wang, the Samuel Reynolds Pritchard Professor of Engineering at Virginia Tech, has a scholarly record of achievements in the imaging world. More than 1000 scientific citations are attributed to his group’s pioneering efforts. In 2002, for example, he and his research group pioneered another highly sensitive imaging procedure called bioluminescence tomography (BLT). One application of the in vivo molecular imaging technology became the identification of tumors in live animals.

As an additional example, in 2007 he and his collaborators, Yangbo Ye of the University of Iowa and Hengyong Yu, who is the associate director of Wang’s CT lab, patented a novel x-ray imaging method called “interior tomography”.

Interior tomography, Wang said, was “a first step” towards overcoming the long-standing barrier to realizing the full potential of x-ray nano-CT. Despite the ability of this cutting-edge imaging tool as a non-destructive, non-invasive recorder of information, it cannot “precisely reconstruct an interior region of interest within a large object from purely local projections,” Wang said. And, when used in medicine, a patient is subjected to “a radiation dose that must be increased dramatically to obtain improved resolutions.”

Wang suggested to the NSF that the combination of X-ray nano-CT and interior tomography will provide “a versatile nano-imaging tool that can visualize fine features within a larger object, and use a much lower radiation dose and in much less time.” This new work is the foundation of the NSF project.

Working with Wang on this NSF grant are Chris Wyatt, associate professor of electrical and computer engineering, Linbing Wang, associate professor of civil and environmental engineering, and Yu, all at Virginia Tech. Also, David Carroll, associate professor of physics at Wake Forest University, is a member of the team. On the industrial side, the key collaborators are Steve Wang, S. H. Lau and Wenbing Yun.

Together, they believe they can construct this next generation of a nano-CT imaging system that will provide images that will reveal deeply imbedded details, including subcellular features. And, they believe they can handle a sample that is ten times larger than what is currently available, and at much reduced radiation dose,” Wang explained.

Wang, director of the Virginia Tech-Wake Forest University School of Biomedical Engineering Sciences' biomedical imaging division, http://www.imaging.sbes.vt.edu is also the founding editor-in-chief of the International Journal of Biomedical Imaging. He is the associate editor of the Institute of Electrical and Electronic Engineers (IEEE) Transactions on Medical Imaging and others.

SBES is part of the University’s Institute for Critical Technology and Applied Science (ICTAS). http://www.ictas.vt.edu/index.shtml. ICTAS has already developed a state-of-the-art nanoscale characterization and fabrication laboratory with capabilities on par with the best nanotechnology labs in the world. With his high-end 500 nanometer micro-CT system, newly funded by the National Institutes of Health (NIH), Wang is making efforts to build an advanced multi-scale CT facility in synergistic combination with the existing university resources as shown in the following chart.

“We are realizing our dream to establish the world’s most advanced comprehensive multi-scale and multi-parameter CT facility,” Wang said. The use of the facility will be available to other universities and industry.

An academic partnership already exists between Virginia Tech and Xradia. Xradia is already in talks with Virginia Tech about commercializing the next generation nano-CT system. http://www.xradia.com/

Learn more about Dr. Ge Wang and SBES at: www.sbes.vt.edu/people/faculty/primary/wangg.html

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>