Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating terahertz radiation from water makes 'the impossible, possible'

29.09.2017

Xi-Cheng Zhang has worked for nearly a decade to solve a scientific puzzle that many in the research community believed to be impossible: producing terahertz waves--a form of electromagnetic radiation in the far infrared frequency range--from liquid water.

Now, as reported in a paper published in Applied Physics Letters, researchers at the University of Rochester have "made the impossible, possible," says Zhang, the M. Parker Givens Professor of Optics. "Figuring out how to generate terahertz waves from liquid water is a fundamental breakthrough because water is such an important element in the human body and on Earth."


Researchers use lasers to generate terahertz pulses via interaction with a target. In this case, the target was an extremely thin water film -- approximately 200 microns or about the thickness of two pieces of paper -- created using water suspended between two aluminum wires.

Credit: University of Rochester photo / Kaia Williams

Terahertz waves have attracted increased attention recently because of their ability to nondestructively pass through solid objects, including those made of cloth, paper, wood, plastic, and ceramics, and produce images of the interiors of the objects.

Additionally, the energy of a terahertz photon is weaker than an x-ray photon. Unlike x-rays, terahertz waves are non-ionizing--they do not have enough energy to remove an electron from an atom--so they do not have the same harmful effects on human tissue and DNA.

Because of these abilities, terahertz waves have unique applications in imaging and spectroscopy--everything from discovering bombs in suspicious packages, to identifying murals hidden beneath coats of paint, to detecting tooth decay.

"Terahertz waves have a capacity to see through clothing, which is why you have these sub-terahertz body scanners at airports," Zhang says. "These waves can help to identify if an object is explosive, chemical, or biological, even if they can't tell exactly what the object is."

Zhang's research group uses lasers to generate terahertz pulses via interaction with a target. In this case, the target is an extremely thin film of water--approximately 200 microns or about the thickness of two pieces of paper--created using water suspended by surface tension between two aluminum wires. Researchers focus a laser into the water film, which acts as an emitter for the terahertz radiation output.

Previous researchers have generated terahertz waves from targets of solid crystals, metals, air plasma, and water vapor, but, until now, liquid water has proved elusive.

"Water was considered the enemy of terahertz waves because of water's strong absorption," Zhang says. "We always tried to avoid water, but it is a surprisingly efficient terahertz source."

In fact, when researchers measured the terahertz waves generated by the water, they found they were 1.8 times stronger than the terahertz waves generated from air plasma under comparable experimental conditions.

Because water is such a strong absorber, however, many people in the research community believed it would be impossible to use water as a target. Zhang himself has spent years attempting a solution, and he found a likewise stalwart in Qi Jin, now a PhD candidate in optics at Rochester, and the lead author on the paper.

"Almost everybody thought we wouldn't be able to get a signal from water," Jin says. "At first, I didn't believe it either."

One of the challenges was creating a film of water thin enough that the terahertz photons generated by the laser beam would not be absorbed, but thick enough to withstand the laser's energy.

Along with Yiwen E, a postdoctoral associate in Zhang's research group, Jin spent months optimizing the thickness of the water film and the incident angle, intensity, and pulse duration of the laser beam.

"We increased the thickness of the water a little bit, and gradually increased the laser, and just kept trying until we could make it work," Jin says. "Water is one of the richest resources on Earth, so it was really important for us to be able to generate these waves from water. There were many times I wanted to give up on this, but people in the lab kept encouraging me."

Zhang agrees: "I always tell my students and researchers here: if you try something, you might not get the result you wanted. But if you never try it, you definitely won't get it."

###

The research was sponsored by grants from the Army Research Office.

Media Contact

Lindsey Valich
lvalich@ur.rochester.edu
585-276-6264

 @UofR

http://www.rochester.edu 

Lindsey Valich | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>