Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko Foot Adhesive Gets Stronger, Directional Gripping

13.10.2008
The race for the best “gecko foot” dry adhesive got a new competitor this week with a stronger and more practical material reported in the journal Science by a team of researchers from four U.S. institutions.

Scientists have long been interested in the ability of gecko lizards to scurry up walls and cling to ceilings by their toes. The creatures owe this amazing ability to microscopic branched elastic hairs in their toes that take advantage of atomic-scale attractive forces to grip surfaces and support surprisingly heavy loads. Several research groups have attempted to mimic those hairs with structures made of polymers or carbon nanotubes.

In a paper to be published in the October 10 issue of Science, researchers from the University of Dayton, the Georgia Institute of Technology, the Air Force Research Laboratory and the University of Akron describe an improved carbon nanotube-based material that for the first time creates directionally-varied (anisotropic) adhesive force. With a gripping ability nearly three times the previous record – and ten times better than a real gecko at resisting perpendicular shear forces – the new carbon nanotube array could give artificial gecko feet the ability to tightly grip vertical surfaces while being easily lifted off when desired.

Beyond the ability to walk on walls, the material could have many technological applications, including connecting electronic devices and substituting for conventional adhesives in the dry vacuum of space. The research has been sponsored by the National Science Foundation and the U.S. Air Force Research Laboratory at Wright-Patterson Air Force Base near Dayton, Ohio.

“The resistance to shear force keeps the nanotube adhesive attached very strongly to the vertical surface, but you can still remove it from the surface by pulling away from the surface in a normal direction,” explained Liming Dai, the Wright Brothers Institute Endowed Chair in the School of Engineering at the University of Dayton. “This directional difference in the adhesion force is a significant improvement that could help make this material useful as a transient adhesive.”

The key to the new material is the use of rationally-designed multi-walled carbon nanotubes formed into arrays with “curly entangled tops,” said Zhong Lin Wang, a Regents’ Professor in the Georgia Tech School of Materials Science and Engineering. The tops, which Wang compared to spaghetti or a jungle of vines, mimic the hierarchical structure of real gecko feet, which include branching hairs of different diameters.

When pressed onto a vertical surface, the tangled portion of the nanotubes becomes aligned in contact with the surface. That dramatically increases the amount of contact between the nanotubes and the surface, maximizing the van der Waals forces that occur at the atomic scale. When lifted off the surface in a direction parallel to the main body of the nanotubes, only the tips remain in contact, minimizing the attraction forces, Wang explained.

“The contact surface area matters a lot,” he noted. “When you have line contact along, you have van der Waals forces acting along the entire length of the nanotubes, but when you have a point contact, the van der Waals forces act only at the tip of the nanotubes. That allows us to truly mimic what the gecko does naturally.”

In tests done on a variety of surfaces – including glass, a polymer sheet, Teflon and even rough sandpaper – the researchers measured adhesive forces of up 100 Newtons per square centimeter in the shear direction. In the normal direction, the adhesive forces were 10 Newtons per square centimeter – about the same as a real gecko.

The resistance to shear increased with the length of the nanotubes, while the resistance to normal force was independent of tube length.

Though the material might seem most appropriate for use by Spider-Man, the real applications may be less glamorous. Because carbon nanotubes conduct heat and electrical current, the dry adhesive arrays could be used to connect electronic devices.

“Thermal management is a real problem today in electronics, and if you could use a nanotube dry adhesive, you could simply apply the devices and allow van der Waals forces to hold them together,” Wang noted. “That would eliminate the heat required for soldering.”

Another application might be for adhesives that work long-term in space. “In space, there is a vacuum and traditional kinds of adhesives dry out,” Dai noted. “But nanotube dry adhesives would not be bothered by the space environment.”

In addition those already mentioned, the research team also included Liangti Qu from the University of Dayton, Morley Stone from the Air Force Research Laboratory, and Zhenhai Xia from the University of Akron.

Qu, a research assistant in the laboratory of Liming Dai, grew the nanotube arrays with a low-pressure chemical vapor deposition process on a silicon wafer. During the pyrolytic growth of the vertically-aligned multi-walled nanotubes, the initial segments grew in random directions and formed a top layer of coiled and entangled nanotubes. This layer helped to increase the nanotube area available for contacting a surface.

Qu noted that sample purity was another key factor in ensuring strong adhesion for the carbon nanotube dry adhesive.

For the future, the researchers hope to learn more about the surface interactions so they can further increase the adhesive force. They also want to study the long-term durability of the adhesive, which in a small number of tests became stronger with each attachment.

And they may also determine how much adhesive might be necessary to support a human wearing tights and red mask.

“Because the surfaces may not be uniform, the adhesive force produced by a larger patch may not increase linearly with the size,” Dai said. “There is much we still need to learn about the contact between nanotubes and different surfaces.”

Technical Contacts: Zhong Lin Wang (404-894-8008); E-mail: (zhong.wang@mse.gatech.edu) or Liming Dai (937-229-2670); E-mail: (liming.dai@notes.udayton.edu).

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>