Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko Foot Adhesive Gets Stronger, Directional Gripping

13.10.2008
The race for the best “gecko foot” dry adhesive got a new competitor this week with a stronger and more practical material reported in the journal Science by a team of researchers from four U.S. institutions.

Scientists have long been interested in the ability of gecko lizards to scurry up walls and cling to ceilings by their toes. The creatures owe this amazing ability to microscopic branched elastic hairs in their toes that take advantage of atomic-scale attractive forces to grip surfaces and support surprisingly heavy loads. Several research groups have attempted to mimic those hairs with structures made of polymers or carbon nanotubes.

In a paper to be published in the October 10 issue of Science, researchers from the University of Dayton, the Georgia Institute of Technology, the Air Force Research Laboratory and the University of Akron describe an improved carbon nanotube-based material that for the first time creates directionally-varied (anisotropic) adhesive force. With a gripping ability nearly three times the previous record – and ten times better than a real gecko at resisting perpendicular shear forces – the new carbon nanotube array could give artificial gecko feet the ability to tightly grip vertical surfaces while being easily lifted off when desired.

Beyond the ability to walk on walls, the material could have many technological applications, including connecting electronic devices and substituting for conventional adhesives in the dry vacuum of space. The research has been sponsored by the National Science Foundation and the U.S. Air Force Research Laboratory at Wright-Patterson Air Force Base near Dayton, Ohio.

“The resistance to shear force keeps the nanotube adhesive attached very strongly to the vertical surface, but you can still remove it from the surface by pulling away from the surface in a normal direction,” explained Liming Dai, the Wright Brothers Institute Endowed Chair in the School of Engineering at the University of Dayton. “This directional difference in the adhesion force is a significant improvement that could help make this material useful as a transient adhesive.”

The key to the new material is the use of rationally-designed multi-walled carbon nanotubes formed into arrays with “curly entangled tops,” said Zhong Lin Wang, a Regents’ Professor in the Georgia Tech School of Materials Science and Engineering. The tops, which Wang compared to spaghetti or a jungle of vines, mimic the hierarchical structure of real gecko feet, which include branching hairs of different diameters.

When pressed onto a vertical surface, the tangled portion of the nanotubes becomes aligned in contact with the surface. That dramatically increases the amount of contact between the nanotubes and the surface, maximizing the van der Waals forces that occur at the atomic scale. When lifted off the surface in a direction parallel to the main body of the nanotubes, only the tips remain in contact, minimizing the attraction forces, Wang explained.

“The contact surface area matters a lot,” he noted. “When you have line contact along, you have van der Waals forces acting along the entire length of the nanotubes, but when you have a point contact, the van der Waals forces act only at the tip of the nanotubes. That allows us to truly mimic what the gecko does naturally.”

In tests done on a variety of surfaces – including glass, a polymer sheet, Teflon and even rough sandpaper – the researchers measured adhesive forces of up 100 Newtons per square centimeter in the shear direction. In the normal direction, the adhesive forces were 10 Newtons per square centimeter – about the same as a real gecko.

The resistance to shear increased with the length of the nanotubes, while the resistance to normal force was independent of tube length.

Though the material might seem most appropriate for use by Spider-Man, the real applications may be less glamorous. Because carbon nanotubes conduct heat and electrical current, the dry adhesive arrays could be used to connect electronic devices.

“Thermal management is a real problem today in electronics, and if you could use a nanotube dry adhesive, you could simply apply the devices and allow van der Waals forces to hold them together,” Wang noted. “That would eliminate the heat required for soldering.”

Another application might be for adhesives that work long-term in space. “In space, there is a vacuum and traditional kinds of adhesives dry out,” Dai noted. “But nanotube dry adhesives would not be bothered by the space environment.”

In addition those already mentioned, the research team also included Liangti Qu from the University of Dayton, Morley Stone from the Air Force Research Laboratory, and Zhenhai Xia from the University of Akron.

Qu, a research assistant in the laboratory of Liming Dai, grew the nanotube arrays with a low-pressure chemical vapor deposition process on a silicon wafer. During the pyrolytic growth of the vertically-aligned multi-walled nanotubes, the initial segments grew in random directions and formed a top layer of coiled and entangled nanotubes. This layer helped to increase the nanotube area available for contacting a surface.

Qu noted that sample purity was another key factor in ensuring strong adhesion for the carbon nanotube dry adhesive.

For the future, the researchers hope to learn more about the surface interactions so they can further increase the adhesive force. They also want to study the long-term durability of the adhesive, which in a small number of tests became stronger with each attachment.

And they may also determine how much adhesive might be necessary to support a human wearing tights and red mask.

“Because the surfaces may not be uniform, the adhesive force produced by a larger patch may not increase linearly with the size,” Dai said. “There is much we still need to learn about the contact between nanotubes and different surfaces.”

Technical Contacts: Zhong Lin Wang (404-894-8008); E-mail: (zhong.wang@mse.gatech.edu) or Liming Dai (937-229-2670); E-mail: (liming.dai@notes.udayton.edu).

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>