Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas cloud in the galactic centre is part of a larger gas streamer

24.11.2014

In November, astronomers at the Max Planck Institute for Extraterrestrial Physics presented new observations of the gas cloud G2 in the galactic centre originally discovered in 2011. These data are in remarkably good agreement with an on-going tidal disruption.

As a complete surprise came the discovery that the orbit of G2 matches that of another gas cloud detected a decade ago, suggesting that G2 might actually be part of a much more extensive gas streamer. This would also match some of the proposed scenarios that try to explain the presence of G2. One such model is that G2 is originating from the wind from a massive star.


April 2014: High-resolution image of the gas cloud G2 at the centre of our Milky Way with the SINFONI instrument at the VLT. The red part of the cloud approaches the 4 million solar masses black hole (indicated with a cross) at velocities of a few thousand km/s. The blue part has already passed the closest distance to the black hole and moves away again. The initially spherical could has been stretched by the strong gravitational field of the black hole by a factor 50 in the direction of motion. The cloud's size from red to blue now corresponds to 900 times the Earth-Sun distance. The solid line shows the orbit of the gas cloud. The dashed lines show the orbit of the star with the best known orbit (S2). The positions of the neighbouring stars are indicated as well.

© MPE


High-resolution images of the centre of our Milky Way with the SINFONI instrument at the VLT. The two gasclouds G1 and G2 are coloured blue and red, respectively. The dashed lines show the orbits of the star with the best known orbit (S2) as well as the best-fit common orbit for the two gas clouds. The cross marks the position of the 4 million solar mass black hole at the galactic centre.

© MPE

The gas cloud G2 was originally detected by Stefan Gillessen and his colleagues at the Max Planck Institute for Extraterrestrial Physics (MPE) in 2011. It is on a highly eccentric orbit around the galactic centre and observations in 2013 have shown that part of the gas cloud is already past its closest approach to the black hole, at a distance of roughly 20 light hours (a bit more than 20 billion kilometres or 2000 Schwarzschild radii).

The new, deep infrared observations with the SINFONI instrument at the VLT track the ongoing tidal disruption of the gas cloud by the powerful gravitational field. While the shape and path of the gas cloud agrees well with predictions from the models, so far there has been no significant enhanced high-energy emission, as one might have expected from the associated shock front.

But a closer look into the data set led to a surprise. “Already a decade ago, another gas cloud – which we now call G1 – has been observed in the central region of our galaxy,” remarks Stefan Gillessen. “We explored the connection between G1 and G2 and find an astonishing similarity in both orbits.”

The faint and blurry object G1 can be seen in the data sets from 2004 to 2008. The MPE team was able to determine also G1’s orbit. This revealed that it has already passed pericenter in 2001. The similarity of the orbits thus suggests that G1 is about 13 years ahead of G2. The scientists fed this information into a model for a combined orbit, taking into account the different pericentre times and allowing for slightly different orbits due to interaction of the gas with the ambient medium after pericentre passage.

“Our basic idea is that G1 and G2 might be clumps of the same gas streamer”, explains Oliver Pfuhl, lead author of the study presented in the recent paper. “In this case, we should be able to simultaneously fit both data sets and, indeed, our model captures the G1 and G2 orbits remarkably well.”

The model makes the simple assumption that G1 was decelerated during pericentre passage by a drag force due to the thin atmosphere that surrounds the massive black hole. This drag pushed it into a more circular orbit. Using just this very simple assumption the emission of both G1 and G2 apparently trace the same orbit. Small deviations from the fit are not surprising given the simplicity of the model, which likely is neglecting some essential physics.

“The good agreement of the model with the data renders the idea that G1 and G2 are part of the same gas streamer highly plausible,” states Gillessen. A likely source for both G1 and G2 could then be clumps in the wind of one of the massive disk stars, which could have been ejected some 100 years ago close to the apocentre of the G2 orbit. Another possible explanation that has been suggested recently would be a large star, enveloped by an extended gas cloud. Based on the current VLT data, however, this model is highly unlikely.

Moreover, the gas streamer picture could also help to explain the missing X-ray emission from the gas cloud near the black hole, although the non-detection of such emission is not yet understood.


Contacts


Pfuhl, Oliver
postdoc
Phone: +49 (0)89 30000-3852
Fax: +49 (0)89 30000-3569
Email: pfuhl@mpe.mpg.de

Gillessen, Stefan

Phone:+49 (0)89 30000-3839
Fax: +49 (0)89 30000-3390
Email: ste@mpe.mpg.de

Hämmerle, Hannelore

Phone: +49 (0)89 30000-3980
Fax: +49 (0)89 30000-3569
Email: hanneh@mpe.mpg.de

 
Original publication
1
Oliver Pfuhl, Stefan Gillessen et al.
The Galactic Center cloud G2 and its gas streamer

Accepted for publication in ApJ

Dr. Hannelore Hämmerle | Max-Planck-Institut
Further information:
http://www.mpe.mpg.de/~ste/

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>