Gamma rays will reach beyond the limits of light

Gamma rays are electromagnetic waves, just like visible light or X-rays, but with much higher energy. The most energetic gamma rays in the world could be created by the help of advanced laser physics. When the laser light is intense enough and all parameters are right, trapped particles (green) could efficiently convert the laser energy (surfaces in red, orange and yellow) into cascades of super-high energy photons (pink). Credit: Arkady Gonoskov

“When we exceed the limit of what is currently possible, we can see deeper into the basic elements of nature. We can dive into the deepest part of the atomic nuclei,” says Arkady Gonoskov, researcher at the Department of Physics at Chalmers University of Technology.

The results were recently published in the high impact journal Physical Review X. The new method is an outcome of a collaboration between Chalmers University of Technology in Sweden, Institute of Applied Physics and Lobachevsky University in Russia and University of Plymouth in the UK.

Physicists in different fields, as well as computer scientists, have managed to work out the numerical models and analytic estimates for simulating these ultra-strong gamma rays in a new and somehow unexpected way.

In normal cases, if you shoot a laser pulse at an object, all the particles scatter. But if the laser light is intense enough and all parameters are right, the researchers have found that the particles are instead trapped. They form a cloud where particles of matter and antimatter are created and start to behave in a very special, unusual way.

“The cloud of trapped particles efficiently converts the laser energy into cascades of high energy photons – a phenomena that is very fortunate. It's an amazing thing that the photons from this source can be of such high energy,” says Mattias Marklund, professor at the Department of Physics at Chalmers.

The discovery is highly relevant for the future large scale laser facilities that are under development right now. The most intense light sources on earth will be produced at such research facilities – as big as football fields.

“Our concept is already part of the experimental program proposed for one such facility: Exawatt Center for Extreme Light Studies in Russia. We still don't know where these studies will lead us, but we know that there are yet things to be discovered within nuclear physics, for example new sources of energy. With fundamental studies, you can aim at something and end up discovering something completely different – which is more interesting and important,” says Arkady Gonoskov.

Media Contact

Johanna Wilde
johanna.wilde@chalmers.se
46-317-722-029

 @chalmersuniv

http://www.chalmers.se/en/ 

Media Contact

Johanna Wilde EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Speaking without vocal cords, thanks to a new AI-assisted wearable device

The adhesive neck patch is the latest advance by UCLA bioengineers in speech technology for people with disabilities. People with voice disorders, including those with pathological vocal cord conditions or…

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

Partners & Sponsors