Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma-ray Astronomy: Site negotiations for Cherenkov Telescope Array started

14.04.2014

Decision on the southern site of CTA at the end of the year

Chile and Namibia as well as Argentina as a third option have been selected from the candidates on the southern hemisphere for concrete negotiations. This has now been decided by representatives of the funding countries based on the recommendations of an independent site selection committee.


Planned types of telescopes for CTA.

Graphics: CTA consortium

On the 10th April 2014, the 12 country delegates mandated by their governments to decide about the start of site negotiations for CTA met in Munich. They took note of the report of the international Site Selection Committee (SSC) and thanked the members of the SSC as well as the CTA consortium for their extensive inputs on the merits of the proposed sites.

The delegates representing Argentina, Austria, Brazil, France, Germany, Italy, Namibia, Poland, Spain, South Africa, Switzerland and the UK decided, based on the 75% majority required, to start the negotiations on the two sites in the southern hemisphere, namely Aar in Namibia and ESO* in Chile, keeping Leoncito in Argentina as a third option. After negotiations finally one site will be selected at the end of the year. With the selection of the potential telescope sites in the southern hemisphere an important step towards the realization of the international Cherenkov Telescope Array has been made.

As far as the northern site of the CTA Observatory is concerned – candidate sites are located in Mexico, Spain and the USA - further considerations are necessary.Therefore, the delegates decided to postpone their decision and to ask the CTA board of agency representatives – the Resource Board - to take this forward.The decision for the negotiations about the northern hemisphere site will be taken as soon as possible.

“We are very happy that this important step has been reached” said B. Vierkorn-Rudolph, chair of the CTA Resource Board. “CTA will be a unique large-scale infrastructure for astronomy - with this decision we now can start the negotiations with the potential site countries in the southern hemisphere and advance the implementation of CTA”. The spokesperson of the CTA Consortium, Professor Werner Hofmann said “The site choice is on the critical path towards implementing CTA; this decision represents a major step forward and we appreciate very much the engagement and support of the funding agencies and the country delegates involved in the decision”.

CTA – the Cherenkov Telescope Array – is a multinational, world-wide project to construct a unique instrument exploring the cosmos at the highest photon energies. Over 1000 scientists and engineers from 5 continents, 28 countries and over 170 research institutes participate in the CTA project. CTA will provide an order-of-magnitude jump in sensitivity over current instruments, providing novel insights into some of the most extreme processes in the Universe.

CTA will consist of over 100 Cherenkov telescopes of 23-m, 12-m and 4-m dish size located at one site in the southern and a smaller site in the northern hemisphere. Potential candidate sites have been identified in the northern and southern hemisphere. Extensive studies of the environmental conditions, simulations of the science performance and assessments of costs of construction were conducted. The Site Selection Committee, composed of international experts in the evaluation of sites for astronomical observatories, has reviewed the studies and provided an independent assessment of the various candidate sites.

*ESO – European Southern Observatory

Contact:

Dr. B. Vierkorn-Rudolph, Chair CTA Resource Board, +49-228-99 57-3633
Dr. G. Vettolani, Co-Chair CTA Resource Board, +39-06-35533360


Prof. W. Hofmann, CTA Spokesperson, +49-6221-516330
Prof. M. Martinez, CTA Co-Spokesperson, +34-93-5811309
Prof. S. Wagner, CTA Project Office, +49-6221-541712

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

Further reports about: Array Astronomy CTA Cherenkov Chile Gamma-ray Kernphysik Max-Planck-Institut Observatory SSC Telescope

More articles from Physics and Astronomy:

nachricht A drop of water as a model for the interplay of adhesion and stiction
30.06.2016 | Universität Zürich

nachricht Optical lenses, hardly larger than a human hair
29.06.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>