Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Gamers' method creates unique 4-D molecular spectral maps

19.04.2017

4-D spectral maps with new detail extracted via a multidimensional coherent spectroscopic method called 'GAMERS,' elucidating subtle effects governing the chemical, physical and optical properties of systems

Researchers at Northwestern University have created a new method to extract the static and dynamic structure of complex chemical systems. In this context, "structure" doesn't just mean the 3-D arrangement of atoms that make up a molecule, but rather time-dependent quantum-mechanical degrees of freedom that dictate the optical, chemical and physical properties of the system.


This is a simulated 4-D GAMERS spectrum shown as a 3-D cut through one spectral axis. Two dimensions encode information on vibrational frequencies, while the remaining dimensions represent electronic transitions in the molecule.

Credit: Harel

Consider how we view the world: three dimensions in space and one dimension in time, i.e., space-time. Remove any one of these dimensions and the view becomes incomplete and far more confused. For the same reason, this new method uses four spectral dimensions to resolve structure to reveal hidden features of molecular structure.

In this week's The Journal of Chemical Physics, from AIP Publishing, assistant professor Elad Harel and professor Irving M. Klotz, from the Department of Chemistry at Northwestern University, report a novel 4-D coherent spectroscopic method that directly correlates within and between electronic and vibrational degrees of freedom of complex molecular systems.

Harel's work involves a theoretical description of a recent experimental method developed in his lab, called GRadient-Assisted Multi-dimensional Electronic Raman Spectroscopy, or "GAMERS." It's a multidimensional coherent spectroscopic method in which the dimensions are the electronic and vibrational degrees of freedom of the system.

"Using multiple pulses of light, GAMERS probes how these different degrees of freedom are correlated to one another, creating a sort of spectral map that is unique to each molecule," Harel said. "[I]t demonstrates that subtle effects dictating the chemical, physical, and optical properties of a system, which are normally hidden in lower-order or lower-dimensionality methods, may be extracted by the GAMERS method."

Unlike other methods, this enables a uniquely detailed look at the molecules' energy structure in way that may offer predictive value.

"The shape of the potential surface, which is important for determining the kinetics and thermodynamics of a chemical reaction, may be directly measured," Harel said. "The level of molecular detail afforded by using more pulses of light to interrogate the system was surprising."

One potential application of GAMERS could be to pinpoint the physical mechanism of energy transfer during the earliest stages of photosynthesis, a question that remains controversial among researchers, according to Harel.

Right now, the main application of this work "is to enable insights into the physical mechanisms behind a host of quantum phenomena in a wide variety of chemical systems," Harel said. "These include singlet fission processes, charge carrier generation and transport in hybrid perovskites, and energy transfer in pigment-protein complexes. Understanding these processes has important implications for developing next-generation solar cells."

The GAMERS method is still in an early phase of development, according to Harel, but the team has high hopes for its future application.

"We believe technical advances could make such analysis far more widespread within the chemical physics community," said Harel.

###

The article, "Four-dimensional coherent electronic Raman spectroscopy," is authored by Elad Harel. The article will appear in The Journal of Chemical Physics April 18, 2017 (DOI: 10.1063/1.4979485). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4979485.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht Lasers measure jet disintegration
19.04.2017 | American Institute of Physics

nachricht Hydrogen halo lifts the veil of our galactic home
19.04.2017 | University of Arizona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

Im Focus: First long-term stabile brain implant developed based on an anti-inflammatory coating

No sugar coating, but sweet nonetheless

Complex neurotechnological devices are required to directly select and influence brain waves inside the skull’s interior. Although it has become relatively...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

 
Latest News

Lasers measure jet disintegration

19.04.2017 | Physics and Astronomy

'Gamers' method creates unique 4-D molecular spectral maps

19.04.2017 | Physics and Astronomy

New mechanism to fight multi-resistant bacteria revealed

19.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>