Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Gamers' method creates unique 4-D molecular spectral maps

19.04.2017

4-D spectral maps with new detail extracted via a multidimensional coherent spectroscopic method called 'GAMERS,' elucidating subtle effects governing the chemical, physical and optical properties of systems

Researchers at Northwestern University have created a new method to extract the static and dynamic structure of complex chemical systems. In this context, "structure" doesn't just mean the 3-D arrangement of atoms that make up a molecule, but rather time-dependent quantum-mechanical degrees of freedom that dictate the optical, chemical and physical properties of the system.


This is a simulated 4-D GAMERS spectrum shown as a 3-D cut through one spectral axis. Two dimensions encode information on vibrational frequencies, while the remaining dimensions represent electronic transitions in the molecule.

Credit: Harel

Consider how we view the world: three dimensions in space and one dimension in time, i.e., space-time. Remove any one of these dimensions and the view becomes incomplete and far more confused. For the same reason, this new method uses four spectral dimensions to resolve structure to reveal hidden features of molecular structure.

In this week's The Journal of Chemical Physics, from AIP Publishing, assistant professor Elad Harel and professor Irving M. Klotz, from the Department of Chemistry at Northwestern University, report a novel 4-D coherent spectroscopic method that directly correlates within and between electronic and vibrational degrees of freedom of complex molecular systems.

Harel's work involves a theoretical description of a recent experimental method developed in his lab, called GRadient-Assisted Multi-dimensional Electronic Raman Spectroscopy, or "GAMERS." It's a multidimensional coherent spectroscopic method in which the dimensions are the electronic and vibrational degrees of freedom of the system.

"Using multiple pulses of light, GAMERS probes how these different degrees of freedom are correlated to one another, creating a sort of spectral map that is unique to each molecule," Harel said. "[I]t demonstrates that subtle effects dictating the chemical, physical, and optical properties of a system, which are normally hidden in lower-order or lower-dimensionality methods, may be extracted by the GAMERS method."

Unlike other methods, this enables a uniquely detailed look at the molecules' energy structure in way that may offer predictive value.

"The shape of the potential surface, which is important for determining the kinetics and thermodynamics of a chemical reaction, may be directly measured," Harel said. "The level of molecular detail afforded by using more pulses of light to interrogate the system was surprising."

One potential application of GAMERS could be to pinpoint the physical mechanism of energy transfer during the earliest stages of photosynthesis, a question that remains controversial among researchers, according to Harel.

Right now, the main application of this work "is to enable insights into the physical mechanisms behind a host of quantum phenomena in a wide variety of chemical systems," Harel said. "These include singlet fission processes, charge carrier generation and transport in hybrid perovskites, and energy transfer in pigment-protein complexes. Understanding these processes has important implications for developing next-generation solar cells."

The GAMERS method is still in an early phase of development, according to Harel, but the team has high hopes for its future application.

"We believe technical advances could make such analysis far more widespread within the chemical physics community," said Harel.

###

The article, "Four-dimensional coherent electronic Raman spectroscopy," is authored by Elad Harel. The article will appear in The Journal of Chemical Physics April 18, 2017 (DOI: 10.1063/1.4979485). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4979485.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>