Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game-changing nanodiamond discovery for MRI

15.01.2010
Dramatically enhanced image contrast could revolutionize diagnostics and therapeutics

A Northwestern University study shows that coupling a magnetic resonance imaging (MRI) contrast agent to a nanodiamond results in dramatically enhanced signal intensity and thus vivid image contrast.

"The results are a leap and not a small one -- it is a game-changing event for sensitivity," said Thomas J. Meade, the Eileen Foell Professor in Cancer Research in the Weinberg College of Arts and Sciences and the Feinberg School of Medicine. "This is an imaging agent on steroids. The complex is far more sensitive than anything else I've seen."

Meade led the study along with Dean Ho, assistant professor of biomedical engineering and mechanical engineering in the McCormick School of Engineering and Applied Science.

Ho already has demonstrated that the nanodiamonds have excellent biocompatibility and can be used for efficient drug delivery. This new work paves the way for the clinical use of nanodiamonds to both deliver therapeutics and remotely track the activity and location of the drugs.

The study, published online by the journal Nano Letters, also is the first published report of nanodiamonds being imaged by MRI technology, to the best of the researchers' knowledge. The ability to image nanodiamonds in vivo would be useful in biological studies where long-term cellular fate mapping is critical, such as tracking beta islet cells or tracking stem cells.

MRI is a noninvasive medical imaging technique that uses an intravenous contrast agent to produce detailed images of internal structures in the body. MRI is capable of deep tissue penetration, achieves an efficient level of soft tissue contrast with high spatial and time-related resolution, and does not require ionizing radiation.

Contrast agents are used in MRI because they alter the relaxivity (contrast efficacy indicator) and improve image resolution. Gadolinium (Gd) is the material most commonly used as an MRI contrast agent, but its contrast efficacy can be improved.

Meade, Ho and their colleagues developed a gadolinium(III)-nanodiamond complex that, in a series of tests, demonstrated a significant increase in relaxivity and, in turn, a significant increase in contrast enhancement. The Gd(III)-nanodiamond complex demonstrated a greater than 10-fold increase in relaxivity -- among the highest per Gd(III) values reported to date. This represents an important advance in the efficiency of MRI contrast agents.

Ho and Meade imaged a variety of nanodiamond samples, including nanodiamonds decorated with various concentrations of Gd(III), undecorated nanodiamonds and water. The intense signal of the Gd(III)-nanodiamond complex was brightest when the Gd(III) level was highest.

"Nanodiamonds have been shown to be effective in attracting water molecules to their surface, which can enhance the relaxivity properties of the Gd(III)-nanodiamond complex," said Ho. "This might explain why these complexes are so bright and such good contrast agents."

"The nanodiamonds are utterly unique among nanoparticles," Meade said. "A nanodiamond is like a cargo ship -- it gives us a nontoxic platform upon which to put different types of drugs and imaging agents."

The biocompatibility of the Gd(III)-nanodiamond complex underscores its clinical relevance. In addition to confirming the improved signal produced by the hybrid, the researchers conducted toxicity studies using fibroblasts and HeLa cells as biological testbeds.

They found little impact of the hybrid complex on cellular viability, affirming the complex's inherent safety and positioning it as a clinically significant nanomaterial. (Other nanodiamond imaging methods, such as fluorescent nanodiamond agents, have limited tissue penetration and are more appropriate for histological applications.)

Nanodiamonds are carbon-based materials approximately four to six nanometers in diameter. Each nanodiamond's surface possesses carboxyl groups that allow a wide spectrum of compounds to be attached to it, not just gadolinium(III).

The researchers are exploring the pre-clinical application of the MRI contrast agent-nanodiamond hybrid in various animal models. With an eye towards optimizing this novel hybrid material, they also are continuing studies of the structure of the Gd(III)-nanodiamond complex to learn how it governs increased relaxivity.

Meade has pioneered the design and synthesis of chemical compounds for applications in cancer detection, cellular signaling and gene regulation. Ho has pioneered the development of nanodiamonds and has demonstrated their efficiency as drug delivery vehicles. Both are members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The Nano Letters paper is titled "Gd(III)-Nanodiamond Conjugates for MRI Contrast Enhancement." In addition to Ho and Meade, other authors of the paper are Lisa M. Manus (first author), Daniel J. Mastarone, Emily A. Waters, Xue-Qing Zhang, Elise A. Schultz-Sikma, and Keith W. MacRenaris, all from Northwestern University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>