Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galileo's notebooks may reveal secrets of new planet

13.07.2009
Galileo knew he had discovered a new planet in 1613, 234 years before its official discovery date, according to a new theory by a University of Melbourne physicist.

Professor David Jamieson, Head of the School of Physics, is investigating the notebooks of Galileo from 400 years ago and believes that buried in the notations is the evidence that he discovered a new planet that we now know as Neptune.

A hypothesis of how to look for this evidence has been published in the journal Australian Physics and was presented at the first lecture in the 2009 July Lectures in Physics program at the University of Melbourne last week.

If correct, the discovery would be the first new planet identified by humanity since deep antiquity.

Galileo was observing the moons of Jupiter in the years 1612 and 1613 and recorded his observations in his notebooks. Over several nights he also recorded the position of a nearby star which does not appear in any modern star catalogue.

"It has been known for several decades that this unknown star was actually the planet Neptune. Computer simulations show the precision of his observations revealing that Neptune would have looked just like a faint star almost exactly where Galileo observed it," Professor Jamieson says.

But a planet is different to a star because planets orbit the Sun and move through the sky relative to the stars. It is remarkable that on the night of January 28 in 1613 Galileo noted that the "star" we now know is the planet Neptune appeared to have moved relative to an actual nearby star."

There is also a mysterious unlabeled black dot in his earlier observations of January 6, 1613, which is in the right position to be Neptune.

"I believe this dot could reveal he went back in his notes to record where he saw Neptune earlier when it was even closer to Jupiter but had not previously attracted his attention because of its unremarkable star-like appearance."

If the mysterious black dot on January 6 was actually recorded on January 28, Professor Jamieson proposes this would prove that Galileo believed he may have discovered a new planet.

By using the expertise of trace element analysts from the University of Florence, who have previously analyzed inks in Galileo's manuscripts, dating the unlabelled dot in his notebook may be possible. This analysis may be conducted in October this year.

"Galileo may indeed have formed the hypothesis that he had seen a new planet which had moved right across the field of view during his observations of Jupiter over the month of January 1613," Professor Jamieson says.

"If this is correct Galileo observed Neptune 234 years before its official discovery."

But there could be an even more interesting possibility still buried in Galileo's notes and letters.

"Galileo was in the habit of sending a scrambled sentence, an anagram, to his colleagues to establish his priority for the sensational discoveries he made with his new telescope. He did this when he discovered the phases of Venus and the rings of Saturn. So perhaps somewhere he wrote an as-yet undecoded anagram that reveals he knew he discovered a new planet," Professor Jamieson speculates.

Professor Jamieson presented at the first of a series of lectures in July, aimed at giving an insight into fundamental questions in physics to celebrate the 2009 International Year of Astronomy.

For more information visit http://physics.unimelb.edu.au/Community/Newsroom/Events/(category)/2

Rebecca Scott | EurekAlert!
Further information:
http://www.unimelb.edu.au

Further reports about: Galileo Galileo's manuscripts Jupiter Neptune nearby star new planet

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>