Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Zoo – an internet superstar

03.09.2008
Since Galaxy Zoo’s launch in July 2007, some 150,000 members of the public, inspired by the opportunity to be the first to see and classify a galaxy, have helped professional astronomers via this on-line mass-participation project to carry out real scientific research.

Two of Galaxy Zoo’s founders, Chris Lintott, from the Department of Physics at the University of Oxford, and Kate Land reflect on the project’s success in September’s Physics World.

While there has been a range of computer programs that make use of the idle time of users’ PCs to churn through scientific data, like ClimatePrediction.net for modelling global warming, Galaxy Zoo was the first of its kind to engage computer users and ask them to apply their own brain power to help sort one type of galaxy from another.

With almost a million galaxy images provided by the robotic Sloan Digital Sky Survey telescope in New Mexico, the Galaxy Zoo team knew it was a tall order. However, even on the day of launch after a small news item on Radio 4’s Today programme, the site was receiving more than 70,000 classifications each hour.

As Lintott and Land write, “An attractive feature of the project was that these galaxies had literally never been looked at before with the human eye – so people really felt that they were helping with original and unique contributions.”

The original impetus for the project was a research dilemma that required a complete reassessment of 50,000 images. Existing criteria used to define elliptical galaxies – colour, density profile and spectral features – appeared to leave out a small fraction of important elliptical galaxies that were undergoing star formation.

The 150,000 amateur astronomers have helped make more than 50 million classifications, thereby helping the researchers obtain a good statistical error for each one. For about a third of the 900,000 galaxies, more than 80 per cent agreed on the morphology which gave the researchers an astoundingly good starting point.

Advances in our understanding of the universe have already been made and a selection of journal articles has already been published. The researchers are now developing Galaxy Zoo to make a more detailed classification of a smaller set of galaxies plus a deliberate search for more unusual objects.

The founders write, “As we develop the citizen science that powers Galaxy Zoo, we can expect many new discoveries to follow. After all, having 150,000 co-authors is an excellent motivator when it comes to writing papers.”

Also in this issue:

•Ugo Amaldi, son of Italian physicist Edoardo Amaldi, reflects on his father’s remarkable scientific life in particle physics, nuclear physics and gravitational-wave research, as well as his key role in setting up CERN and the European Space Agency.

•The discovery of iron-based high-temperature superconductors has prompted a huge surge of interest in these new materials and rekindled the dream of room-temperature superconductivity.

Joseph Winters | alfa
Further information:
http://www.iop.org
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>